The stress relaxation and proton conductivity of Nafion 117 membrane (N117-H) and sulfonated poly(arylene ether sulfone) copolymer membrane with 35% sulfonation (BPSH35) in acid forms were investigated under uniaxial loading conditions. The results showed that when the membranes were stretched, their proton conductivities in the direction of the strain initially increased compared to the unstretched films. The absolute increases in proton conductivities were larger at higher temperatures. It was also observed that proton conductivities relaxed exponentially with time at 30°C. In addition, the stress relaxation of N117-H and BPSH35 films under both atmospheric and an immersed (in deionized water) condition was measured. The stresses were found to relax more rapidly than the proton conductivity at the same strains. An explanation for the above phenomena is developed based on speculated changes in the channel connectivity and length of proton conduction pathway in the hydrophilic channels, accompanied by the rotation, reorientation, and disentanglements of the polymer chains in the hydrophobic domains.

1.
Slade
,
S.
,
Campbell
,
S. A.
,
Ralph
,
T. R.
, and
Walsh
,
F. C.
, 2002, “
Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes
,”
J. Electrochem. Soc.
0013-4651,
149
, pp.
A1556
A1564
.
2.
Zawodzinski
,
T. A.
,
Meeman
,
M.
,
Sillerud
,
L. O.
, and
Gottesfeld
,
S.
, 1991, “
Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranens
,”
J. Phys. Chem.
0022-3654,
95
, pp.
6040
6044
.
3.
Alberti
,
G.
,
Casciola
,
M.
,
Massinelli
,
L.
, and
Bauer
,
B.
, 2001, “
Polymeric Proton Conducting Membranes For Medium Temperature Fuel Cells (110-160°C)
,”
J. Membr. Sci.
0376-7388,
185
, pp.
73
81
.
4.
Kim
,
Y. S.
,
Wang
,
F.
,
Hickner
,
M.
,
McCartney
,
S.
,
Hong
,
Y. T.
,
Harrison
,
W.
,
Zawodzinski
,
T. A.
, and
McGrath
,
J. E.
, 2003, “
Effect of Acidification Treatment and Morphological Stability of Sulfonated Poly(arylene ether sulfone) Copolymer Proton-Exchange Membranes for Fuel-Cell Use above 100°C
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
41
, pp.
2816
2823
.
5.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
2477
2491
.
6.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
, pp.
2334
2341
.
7.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
102
, pp.
82
96
.
8.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 2002, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
284
294
.
9.
Kreuer
,
K. D.
,
Paddison
,
S. J.
,
Spohr
,
E.
, and
Schuster
,
M.
, 2004, “
Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
104
, pp.
4637
4678
.
10.
Rubatat
,
L.
,
Rollet
,
A. L.
,
Gebel
,
G.
, and
Diat
,
O.
, 2002, “
Evidence of Elongated Polymeric Aggregates in Nafion
,”
Macromolecules
0024-9297,
35
, pp.
4050
4055
.
11.
Rubatat
,
L.
,
Gebel
,
G.
, and
Diat
,
O.
, 2004, “
Fibrillar Structure of Nafion: Matching Fourier and Real Space Studies of Corresponding Films and Solutions
,”
Macromolecules
0024-9297,
37
, pp.
7772
7783
.
12.
Heijden
,
P. C. v. d.
,
Rubatat
,
L.
, and
Diat
,
O.
, 2004, “
Orientation of Drawn Nafion at Molecular and Mesoscopic Scales
,”
Macromolecules
0024-9297,
37
, pp.
5327
5336
.
13.
Heijden
,
P. C. v. d.
,
Rosa
,
A. d. l.
,
Gebel
,
G.
, and
Diat
,
O.
, 2005, “
Relaxation of Drawn Nafion Films Studied With Birefingence Experiments
,”
Polym. Adv. Technol.
1042-7147,
16
, pp.
1
6
.
14.
Liu
,
D.
,
Kyriakides
,
S.
,
Case
,
S. W.
,
Lesko
,
J. J.
,
Li
,
Y.
, and
McGrath
,
J. E.
, 2006, “
Tensile Behavior of Nafion and Sulfonated Poly(arylene ether sulfone) Copolymers and its Morphological Correlations
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
44
, pp.
1453
1465
.
15.
Kim
,
Y. S.
,
Dong
,
L.
,
Hickner
,
M. A.
,
Glass
,
T. E.
,
Webb
,
V.
, and
McGrath
,
J. E.
, 2003, “
State of Water in Disulfonated Poly(arylene ether sulfone) Copolymers and a Perfluorosulfonic Acid Copolymer (Nafion) and Its Effect on Physical and Electrochemical Properties
,”
Macromolecules
0024-9297,
36
, pp.
6281
6285
.
16.
Hsu
,
W. Y.
, and
Gierke
,
T. D.
, 1983, “
Ion Transport and Clustering in Nafion Perfluorinated Membranes
,”
J. Membr. Sci.
0376-7388,
13
, pp.
307
326
.
17.
Wang
,
F.
,
Hickner
,
M.
,
Kim
,
Y. S.
,
Zawodzinski
,
T. A.
, and
McGrath
,
J. E.
, 2002, “
Direct Polymerization of Sulfonated Poly(arylene ether sulfone) Random (Statistical) Copolymers: Candidates For New Proton Exchange Membranes
,”
J. Membr. Sci.
0376-7388,
197
, pp.
231
242
.
18.
Padiyan
,
D. P.
,
Ethilton
,
S. J.
, and
Pauraj
,
K.
, 2000, “
Protonic Conductivity and Photoconductivity Studies on H3PW12O40×21H2O Single Crystals
,”
Cryst. Res. Technol.
0232-1300,
35
, pp.
87
94
.
19.
Li
,
L.
,
Zhang
,
J.
, and
Wang
,
Y.
, 2003, “
Sulfonated Polyether Ether Ketone Membranes Cured With Different Methods For Direct Methanol Fuel Cells
,”
J. Mater. Sci. Lett.
0261-8028,
22
, pp.
1595
1597
.
20.
Paddison
,
S. J.
,
Eikerling
,
M.
,
Zawodzinski
,
T. A.
, and
Pratt
,
L. R.
, 2002, “
Molecular Modeling of Proton Conduction in Polymer Electrolyte Membranes of Nafion® Type
,”
Proc. ICCN 2002 International Conference on Computational Nanoscience
, pp.
115
116
.
21.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes, I: Physical Model
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
A1008
A1015
.
22.
Almeida
,
S. H. d.
, and
Kawano
,
Y.
, 1999, “
Thermal Behavior of Nafion Membranes
,”
J. Therm Anal. Calorim.
1418-2874,
58
, pp.
569
577
.
You do not currently have access to this content.