Abstract

Shape memory alloys (SMA) are good candidates for being integrated in composite laminates where they can be used as passive dampers, strain sensors, stiffness or shape drivers. In order to improve the SMA modeling and develop the use of these alloys in structural vibration control, better understandings of cyclic behavior and thermal dissipation are needed. The present study investigates experimentally the cyclic behavior of SMA and more particularly, the influence of strain rates on three different materials. The thermal dissipation aspect is also studied using an infrared camera. A phenomenological model based on the RL model (Raniecki, B., Lexcellent, C., 1994, “RL Models of Pseudoelasticity and Their Specification for Shape Memory Solids.” Eur. J. A/Solids, 13, pp. 21–50) is then presented with the intention of modeling the behavior’s alterations due to the cycling. By introducing the thermodynamic first principle, a study of the heat equation is developed in order to predict the temperature evolution during a cyclic tensile test. Furthermore, in order to model the damping effect created by the hysteresis phenomenon and the stiffness variation due to the phase transformation, an equivalent nonlinear complex Young’s modulus is introduced. This notion usually used for viscoelastic materials is adapted here to SMA. Moreover, the impact of cycling on the equivalent modulus is presented. As a conclusion, a numerical results panel obtained with the phenomenological cyclic SMA model, the heat equation, and the equivalent complex Young modulus is presented.

References

1.
Saadat
,
S.
,
Saliche
,
J.
,
Noori
,
M.
,
Hou
,
Z.
, and
Davoodi
,
H.
, 1999, “
Promises for Structural Vibration Control (SVC) Using Shape Memory Alloys
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2631
2656
.
2.
Dolce
,
M.
, and
Cardone
,
D.
, 2001, “
Mechanical Behaviour of Shape Memory Alloys for Seismic Applications. 1. Martensite and Austenite Ni–Ti Bars Subjected to Torsion
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2631
2656
.
3.
Dolce
,
M.
, and
Cardone
,
D.
, 2001, “
Mechanical Behaviour of Shape Memory Alloys for Seismic Applications. 2. Austenite Ni–Ti Wires Subjected to Tension
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2657
2677
.
4.
Collet
,
M.
,
Foltête
,
E.
, and
Lexcellent
,
C.
, 2001, “
Analysis of the Behavior of a Shape Memory Alloy Under Dynamical Loading
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
615
630
.
5.
Raniecki
,
B.
, and
Lexcellent
,
C.
, 1994, “
RL Models of Pseudoelasticity and Their Specifications for Shape Memory Solids
,”
Eur. J. Mech. A/Solids
0997-7538,
13
, pp.
21
50
.
6.
Tobushi
,
H.
,
Shimeno
,
Y.
,
Hachisuka
,
T.
, and
Tanaka
,
K.
, 1998, “
Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy
,”
Mech. Mater.
0167-6636,
30
, pp.
141
150
.
7.
Strnadel
,
B.
,
Ohashi
,
S.
,
Otsuka
,
H.
,
Miyazaki
,
S.
, and
Ishihara
,
T.
, 1995, “
Effect of Mechanical Cycling on the Pseudoelasticity Characteristics of Ti–Ni and Ti–Ni–Cu Alloys
,”
Mater. Sci. Eng., A
0921-5093,
203
, pp.
187
196
.
8.
Liu
,
Y.
,
Xie
,
Z.
, and
VanHumbeeck
,
J.
, 1999, “
Cyclic Deformation of Ni–Ti Shape Memory Alloys
,”
Mater. Sci. Eng., A
0921-5093,
273
, pp.
273
375
;
Liu
,
Y.
,
Xie
,
Z.
, and
VanHumbeeck
,
J.
, 1999,
Mater. Sci. Eng., A
0921-5093,
273
, pp.
673
678
.
9.
Piedboeuf
,
M. C.
, and
Gauvin
,
R.
, 1998, “
Damping Behaviour of Shape Memory Alloys: Strain Amplitude, Frequency and Temperature Effects
,”
J. Sound Vib.
0022-460X,
214
(
5
), pp.
885
901
.
11.
Ortin
,
J.
, 1992, “
Preisach Modeling of Hysteresis for a Pseudoelastic Cu–Zn–Al Single Crystal
,”
J. Appl. Phys.
0021-8979,
71–3
, pp.
1454
1461
.
12.
Lexcellent
,
C.
, and
Bourbon
,
G.
, 1996, “
Thermodynamical Model of Cyclic Behavior of Ti–Ni and Cu–Zn–Al Shape Memory Alloys Under Isothermal Undulated Tensile Tests
,”
Mech. Mater.
0167-6636,
24
, pp.
59
73
.
13.
Auricchio
,
F.
,
Marfia
,
S.
, and
Sacco
,
E.
, 2003, “
Modelling of SMA Materials: Training and Two Way Memory Effects
,”
Comput. Struct.
0045-7949,
81
, pp.
2301
2317
.
14.
Abeyaratne
,
R.
, and
Kim
,
S.-J.
, 1997, “
Cyclic Effects in Shape Memory Alloys: A One-Dimensional Continuum Model
,”
Int. J. Solids Struct.
0020-7683,
34–25
, pp.
3273
3289
.
15.
Lim
,
T. J.
, and
McDowell
,
D. L.
, 2002, “
Cyclic Thermomechanical Behavior of a Polycrystalline Pseudoelastic Shape Memory Alloy
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
651
676
.
16.
Leclerq
,
S.
, and
Lexcellent
,
C.
, 1996, “
A General Macroscopic Description of the Thermomechanical Behavior of Shape Memory Alloys
,”
J. Mech. Phys. Solids
0022-5096,
44
, pp.
953
980
.
17.
Miyazaki
,
S.
, 1990, “
Thermal and Stress Cycling Effect and Fatigue Properties of Ni–Ti Alloys
,”
Engineering Aspect of Shape Memory Alloy
,
T. W.
Duerig
et al.
, ed.,
Butterworth-Heinemann
,
London
, pp.
394
413
.
18.
Bourbon
,
G.
, 1994, “
Contribution à l’étude Isotherme et Anisotherme du Comportement Cyclique des Alliages à Mémoire de Forme
,” Thése No. 410, Université de Franche Comté, France.
19.
Caracciolo
,
R.
,
Gasparetto
,
A.
, and
Giovagnoni
,
M.
, 2004, “
An Experimental Technique for Complete Dynamic Characterization of a Viscoelastic Material
,”
J. Sound Vib.
0022-460X,
272
, pp.
1013
1032
.
20.
Pintelon
,
R.
,
Guillaume
,
P.
,
Vanlanduit
,
S.
,
De Belder
,
K.
, and
Rolain
,
Y.
, 2004, “
Identification of Young’s Modulus from Broadhand Modal Analysis Experiment
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
699
726
.
21.
Krylov
,
N.
, and
Bogoliubov
,
N.
, 1943,
Introduction to Nonlinear Mechanics
,
Princeton University Press
,
Princeton, New Jersey
.
22.
Bogoliubov
,
N.
, and
Mitropolsky
,
J.
, 1963,
Asymptotical Methods in the Theory of Nonlinear Oscillations
,
State Press for Physics and Mathematical Literature
,
Moscow
.
23.
Gandhi
,
F.
, and
Wolons
,
D.
, 1999, “
Characterisation of the Pseudoelastic Damping Behavior of Shape Memory Alloy Wires Using Complex Modulus
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
49
56
.
You do not currently have access to this content.