This paper deals with an experimental methodology of the large deformation of cylinders under constrained sides and end conditions. A specific arrangement of two geometrically identical cylinders compressed laterally is studied under different quasi-static strain rates. Several tests are performed using two different structural situations. In the first case, the two cylinders are made from superplastic tin-lead alloy, while in the second case, one cylinder is made from superplastic and the other from steel. Different cylindrical geometries are investigated having the same cross sectional area with different ratios of inner to outer diameter (di/do). The load-deflection curves are recorded and then the energy absorbed per unit volume is determined. The experiments show obviously the remarkable sensitivity of the utilized superplastic to the strain rate in the range of 105/s-103/s. A two-dimensional finite element simulation is also conducted describing the collapse behavior of these cylindrical geometries in both structural cases under different strain rates. A confrontation with experimental observation shows that the predictions describe fairly well the experiments.

1.
Hermann, G., and Perrone, G., 1972, Dynamic Response of Structures, Pergamon Press.
2.
Ezra, A. A., and Fay, R. J. 1970, An Assessment of Energy Absorbing Devices for Prospective Use in Aircraft Impact Situation, Dynamic Response of Structures, G. Hermann and N. Perrone eds., Pergamon Press.
3.
Rawlings, B., 1974, “Response of Structures to Dynamic Loads,” Proc. Conf. On Mechanical Properties of Materials at High Rates of Strain, Institute of Physics Conference, pp. 279–298.
4.
Johnson
,
W.
, and
Reid
,
S. R.
,
1978
, “
Metallic Energy Dissipating Systems
,”
Appl. Mech. Rev.
,
31
, pp.
277
288
.
5.
Johnson, W., and Reid, S. R., 1986, “Metallic Energy Dissipating Systems,” Rev. 31, pp. 277–288; Appl. Mech. Update 1986, pp. 315–319.
6.
Jones, N., 1989, Structural Impact, Cambridge Press, Cambridge, UK.
7.
Alghamdi
,
A. A. A.
,
2001
, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
,
39
, pp.
189
213
.
8.
Alexander
,
J. M.
,
1960
, “
An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading
,”
Q. J. Mech. Appl. Math.
,
13
, pp.
11
16
.
9.
Pugsley
,
A. G.
, and
Macaulay
,
M.
,
1960
, “
The Large Scale Crumpling of Thin Cylindrical Columns
,”
Q. J. Mech. Appl. Math.
,
13
, pp.
1
9
.
10.
Batterman
,
S. C.
,
1968
, “
Free-Edge Plastic Buckling of Axially Compressed Cylindrical Shell
,”
ASME J. Appl. Mech.
,
35
, p.
73
73
.
11.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
, pp.
243
270
.
12.
Reid
,
S. R.
,
Reddy
,
T. Y.
, and
Gray
,
M. D.
,
1986
, “
Static and Dynamic Axial Crushing of Foam-Filled Sheet Metal Tubes
,”
Int. J. Mech. Sci.
,
28
, pp.
295
322
.
13.
Reddy
,
T. Y.
, and
Al-Hassani
,
S. T. S.
,
1993
, “
Axial Crushing of Wood-Filled Square Metal Tubes
,”
Int. J. Mech. Sci.
,
35
, pp.
231
246
.
14.
DeRutz
,
J. A.
, and
Hodge
,
J. R.
,
1963
, “
Crushing of a Tube between Rigid Plates
,”
ASME J. Appl. Mech.
,
30
, pp.
391
395
.
15.
Rewood
,
R. G.
,
1964
, “
Discussion of ref. (DeRutz & Hodge (1963))
,”
ASME J. Appl. Mech.
,
31
, pp.
357
358
.
16.
Johnson
,
W.
,
Reid
,
S. R.
, and
Reddy
,
T. Y.
,
1977
, “
The Compression of Crossed Layers of Thin Tubes
,”
Int. J. Mech. Sci.
,
19
, pp.
423
437
.
17.
Reddy
,
T. Y.
, and
Reid
,
S. R.
,
1979
, “
Lateral Compression of Tubes and Tube-Systems with Side Constraints
,”
Int. J. Mech. Sci.
,
21
, pp.
187
199
.
18.
Reid
,
S. R.
,
Drew
,
S. L. K.
, and
Carney
,
J. F.
,
1983
, “
Energy Absorbing Capacities of Braced Metal Tubes
,”
Int. J. Mech. Sci.
,
25
, pp.
649
667
.
19.
Shim
,
V. P.-W.
, and
Stronge
,
W. J.
,
1986
, “
Lateral Crushing in Tightly Packed Arrays of Thin-Walled Metal Tubes
,”
Int. J. Mech. Sci.
,
28
, pp.
709
722
.
20.
Wu
,
L.
, and
Carney
, III,
J. F.
,
1998
, “
Experimental Analysis of Collapse Behaviors of Braced Elliptical Tubes under Lateral Compression
,”
Int. J. Mech. Sci.
,
40
, pp.
761
777
.
21.
Al-Hassani
,
S. T. S.
,
Johnson
,
W.
, and
Lowe
,
W. T.
,
1972
, “
Characteristics of Inversion Tubes under Axial Loading
,”
J. Mech. Eng. Sci.
,
14
, pp.
370
381
.
22.
Kinkead
,
A. N.
,
1983
, “
Analysis for Inversion Load and Energy Absorption of a Circular Tube
,”
J. Strain Anal.
,
18
, pp.
177
188
.
23.
Reddy
,
T. Y.
, 1989, “Tube Inversion- an Experiment in Plasticity,” Int. J. Mech. Engng. Educ., 17, pp. 277–292.
24.
Reid
,
S. R.
,
1993
, “
Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers
,”
Int. J. Mech. Sci.
,
35
, pp.
1035
1052
.
25.
Abdul-Latif
,
A.
,
2000
, “
On the Lateral Collapse of an Identical Pair of Cylinders
,”
Int. J. Solids Struct.
,
37
, pp.
1955
1973
.
26.
Nesnas
,
K.
, and
Abdul-Latif
,
A.
, 2001, “Lateral Plastic Collapse of Cylinders: Experiments and Modeling,” Computer Modeling in Engineering and Sciences, 2, pp. 373–388
27.
Bellet, M., 1988, “Mode´lisation Nume´rique du Formage Superplastique des To^les,” Ph.D. thesis, Ecole Nationale Supe´rieure des Mines de Paris.
28.
Mingwang
,
F.
, and
Luo
,
Z. J.
,
1996
, “
The Simulation of the Viscoplastic Forming Process by the Finite Element Method
,”
J. Mater. Process. Technol.
,
55
, pp.
442
447
.
29.
Al-Naib
,
T. Y. M.
, and
Duncan
,
J. L.
,
1970
, “
Superplastic Metal Forming
,”
Int. J. Mech. Sci.
,
12
, pp.
463
477
.
You do not currently have access to this content.