In copper and other face centered cubic metals, high-energy particle irradiation produces hardening and shear localization. Post-irradiation microstructural examination in Cu reveals that irradiation has produced a high number density of nanometer sized stacking fault tetrahedra. The resultant irradiation hardening and shear localization is commonly attributed to the interaction between stacking fault tetrahedra and mobile dislocations, although the mechanism of this interaction is unknown. In this work, we present results from a molecular dynamics simulation study to characterize the motion and velocity of edge dislocations at high strain rate and the interaction and fate of the moving edge dislocation with stacking fault tetrahedra in Cu using an EAM interatomic potential. The results show that a perfect SFT acts as a hard obstacle for dislocation motion and, although the SFT is sheared by the dislocation passage, it remains largely intact. However, our simulations show that an overlapping, truncated SFT is absorbed by the passage of an edge dislocation, resulting in dislocation climb and the formation of a pair of less mobile super-jogs on the dislocation.

1.
Mansur
,
L. K.
, and
Bloom
,
E. E.
,
1982
, “
Radiation Effects in Reactor Structural Alloys
,”
J. Met.
,
34
, pp.
23
31
.
2.
Lucas
,
G. E.
,
1993
, “
The Evolution of Mechanical Property Change in Irradiated Austenitic Stainless Steels
,”
J. Nucl. Mater.
,
206
, pp.
287
305
.
3.
Singh
,
B. N.
, and
Zinkle
,
S. J.
,
1993
, “
Defect Accumulation in Pure FCC Metals in the Transient Regime: A Review
,”
J. Nucl. Mater.
,
206
, pp.
212
229
.
4.
Trinkaus
,
H.
,
Singh
,
B. N.
, and
Foreman
,
A. J. E.
,
1997
, “
Segregation of Cascade Induced Interstitial Loops at Dislocations: Possible Effect on Initiation of Plastic Deformation
,”
J. Nucl. Mater.
,
251
, pp.
172
187
.
5.
Victoria
,
M.
,
Baluc
,
N.
,
Bailat
,
C.
,
Dai
,
Y.
,
Luppo
,
M. I.
,
Schaublin
,
R.
, and
Singh
,
B. N.
,
2000
, “
The Microstructure and Associated Tensile Properties of Irradiated FCC and BCC Metals
,”
J. Nucl. Mater.
,
276
, pp.
114
122
.
6.
Dai
,
Y.
, and
Victoria
,
M.
,
1997
, “
Defect Cluster Structure and Tensile Properties of Copper Single Crystals Irradiated With 600 MeV Protons
,”
Mat. Res. Soc. Symp. Proc.
, Vol.
439
, pp.
319
324
.
7.
Ghoniem
,
N. M.
,
Tong
,
S.-S.
, and
Sun
,
L. Z.
,
2000
, “
Parametric Dislocation Dynamics: A Thermodynamics-Based Approach to Investigations of Mesoscopic Plastic Deformation
,”
Phys. Rev. B
,
139
(
1
), pp.
913
927
.
8.
Diaz de la Rubia
,
T.
,
Zbib
,
H. M.
,
Khraishi
,
T. A.
,
Wirth
,
B. D.
,
Victoria
,
M.
, and
Caturla
,
M. J.
,
2000
, “
Plastic Flow Localization in Irradiated Materials: A Multiscale Modeling Approach
,”
Nature (London)
,
406
, pp.
871
874
.
9.
Wirth
,
B. D.
,
Caturla
,
M. J.
,
Diaz de la Rubia
,
T.
,
Khraishi
,
T.
, and
Zbib
,
H.
,
2001
, “
Mechanical Property Degradation in Irradiated Materials: A Multiscale Modeling Approach
,”
Nuclear Instruments and Methods B
,
180
, pp.
23
31
.
10.
Diaz de la Rubia
,
T.
, and
Guinan
,
M. W.
,
1992
, “
New Mechanism of Defect Production in Metals: a Molecular-Dynamics Study of Interstitial-Dislocation-Loop Formation in High-Energy Displacement Cascades
,”
Phys. Rev. Lett.
,
66
, pp.
2766
2769
.
11.
Phythian
,
W. J.
,
Stoller
,
R. E.
,
Foreman
,
A. J. E.
,
Calder
,
A. F.
, and
Bacon
,
D. J.
,
1995
, “
A Comparison of Displacement Cascades in Copper and Iron by Molecular Dynamics and Its Application to Microstructural Evolution
,”
J. Nucl. Mater.
,
223
, pp.
245
261
.
12.
Averback
,
R. S.
, and
Diaz de la Rubia
,
T.
,
1998
, “
Displacement Damage in Irradiated Metals and Semiconductors
,”
Solid State Phys.
,
51
, pp.
281
402
.
13.
Osetsky
,
Y. N.
,
Bacon
,
D. J.
,
Serra
,
A.
,
Singh
,
B. N.
, and
Golubov
,
S. I. Y.
,
2000
, “
Stability and Mobility of Defect Clusters and Dislocation Loops in Metals
,”
J. Nucl. Mater.
,
276
, pp.
65
77
.
14.
Wirth
,
B. D.
,
Bulatov
,
V.
, and
Diaz de la Rubia
,
T.
,
2000
, “
Atomistic Simulation of Stacking Fault Tetrahedra Formation in Cu
,”
J. Nucl. Mater.
,
283–287
, pp.
773
777
.
15.
Caturla
,
M. J.
,
Soneda
,
N.
,
Alonso
,
E. A.
,
Wirth
,
B. D.
, and
Diaz de la Rubia
,
T.
,
2000
, “
Comparative Study of Radiation Damage Accumulation in Cu and Fe.
J. Nucl. Mater.
,
276
, pp.
13
21
.
16.
Rodney
,
D.
, and
Martin
,
G.
,
2000
, “
Dislocation Pinning by Glissile Interstitial Loops in a Nickel Crystal: A Molecular-Dynamics Study
,”
Phys. Rev. B
,
61
, pp.
8714
8725
.
17.
Silcox
,
J.
, and
Hirsch
,
P. B.
,
1959
, “
Direct Observations of Defects in Quenched Gold
,”
Philos. Mag.
,
4
, pp.
72
89
.
18.
Osetsky
,
Y. N.
, and
Bacon
,
D. J.
,
2001
, “
Defect Cluster Formation in Displacement Cascades in Copper
,”
Nuclear Instruments and Methods B
,
180
, pp.
85
90
.
19.
Diaz de la Rubia
,
T.
, and
Guinan
,
M. W.
,
1990
, “
Progress in The Development of a Molecular Dynamics Code for High-Energy Cascade Studies
,”
J. Nucl. Mater.
,
174
, pp.
151
157
.
20.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
, pp.
7983
7991
.
21.
M. Ghaly and R. S. Averback, personal communication.
You do not currently have access to this content.