In this article we present a simplified time model of elastic deformation in rubber. The originality of the method is to provide a model with very few degrees of freedom while conserving the frequential, nonlinear and energetic characteristics of the rubber. The energy dissipation of the elastomer is integrated to the structural level of the material by introducing rheological models or fractional derivatives. The representation obtained may be integrated into the complete vehicle models. It may also be applied to the conception and validation phase of an engine or vehicle suspension.

1.
Perez, J., 1992, “Physique et me´canique des polyme`res amorphes,” Paris, Technique et Documentaton.
2.
Oudet, C., 1993, Polyme`res structure et proprie`te`s, Masson.
3.
Persoz, B., 1960, Introduction a` l’e´tude de la rhe´ologie, Ed. Dunod.
4.
Smith
,
T. L.
,
1958
, “
Approximate equations for interconverting the various properties of linear viscoelastic materials
,”
Trans. Soc. Rheol.
,
II
, pp.
131
151
.
5.
Christensen
,
R. M.
,
1980
, “
A nonlinear theory of viscoelasticity for applications to elastomers
,”
Trans. ASME
,
47
, Dec, pp.
762
768
.
6.
Sullivan
,
J. L.
,
1983
, “
Viscoelastic properties of a gum vulcanizate at large static deformations
,”
J. Appl. Polym. Sci.
,
28
, pp.
1993
2003
.
7.
Hibbit
,
H. D.
,
Marcal
,
P. V.
, and
Rice
,
J. R.
,
1970
, “
A finite element formulation for problems of large strain and large displacement
,”
Int. J. Solids Struct.
,
6
, pp.
1069
1086
.
8.
Oden, J. T., 1972, Finite elements of non-linear continua, Mc Graw-Hill, New York.
9.
Fages, A., 1993, “Mode´lisation du comportement des mate´riaux viscoe´lastiques,” Mate´r. Tech., 12, No. 12.
10.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
,
27
, pp.
201
210
.
11.
Bagley, R. L., and Torvik, P., 1979, “A generalized derivative model for an elastomer damper,” Shock and Vibration Bulletin, 49, No. 49, Sept.
12.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1986
, “
On the fractional calculus model of viscoelastic behavior
,”
J. Rheol.
,
30
, pp.
233
255
.
13.
Gerardin, M., and Rixen, D., 1992, The´orie des Vibrations, Masson.
14.
Ogden, R. W., 1984, Non-Linear Elastic Deformations, Wiley, NY.
15.
Treloar, L. R. G., 1958, The Physics of Rubber Elasticity, 2nd Ed., Oxford, Clarendon Press.
16.
Rivlin
,
R. S.
,
1948
, “
Large elastic deformation of isotropic materials I. Fundamental concepts
,”
Philos. Trans. R. Soc.
,
A240
, pp.
459
490
.
17.
Heuillet, P., and Roumagnac, P., 1995, “Mode´lisation du comportement hypere´lastique des caoutchoucs et e´lastome`res themoplastiques, compact ou cellulaires,” Congres S.I.A.
18.
Lockett
,
F. J.
,
1965
, “
Creep and stress relaxation experiments for non-linear materials
,”
Int. J. Eng. Sci.
,
3
, pp.
59
75
.
19.
Soulimani, Alaoui, 1993, “Me´thode e´nege´tique de mode´lisation de la viscoe´lasticite´ non line´aire en grandes de´formations,” The`se de l’Ecole Nationale des Ponts et Chausse´es, Paris, France.
20.
Snowdon, J. C., 1968, Vibration and Shock in Damped Mechanical Systems, Wiley, New York.
21.
Rouse
,
P. E.
,
1953
, “
A theory of the linear viscoelastic properties of dilute solution of coiling polymers
,”
J. Chem. Phys.
,
21
, No. 7,
July
, pp.
1272
1280
.
22.
Liouville
,
J.
,
1832
, “
Memoire sur le calcul des diffe´rentielles a` indices queconques
,”
J. Ec. Polytech. (Paris)
,
13
, No.
221
, pp.
71
162
.
23.
Gaul
,
L.
, and
Schanz
,
M.
,
1994
, “
Dynamics of viscoelastic solids treated by boundary element approaches in time domain
,”
Eur. J. Mech. A/Solids
,
13
, No. 4, Suppl., pp.
43
59
.
24.
Soula
,
M.
,
Vinh
,
T.
, and
Chevalier
,
Y.
,
1996
, “
Etudes dynamiques des polyme`res et elastome`res par les de´rive´es fractionnaires
,”
Me´c. Ind. Mate´r.
,
49
, No. 2,
June
, pp.
101
103
.
25.
Berardi, G., 1995, “Mode´lisation nume`rique du comportement thermo-viscoe´lastique en grandes de´formations,” The`se de l’Universite´ de Provence, Marseille, France.
26.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York.
27.
Zienkiewicz, O. C., and Taylor, L., 1977, The Finite Element Method (Vols. 1 and 2), 4th Ed., Mc Graw-Hill, NY.
28.
Imbert, J. F., 1979, Analyse des structures par elements finis, Cepadues edition.
You do not currently have access to this content.