Fatigue life prediction of S2-Glass/Vinyl-ester composites has been studied analytically using the fatigue modulus concept. Traditionally it is assumed that the fatigue modulus degradation is a function of loading cycle only. In our present investigation, it is found that the fatigue modulus is not only a function of loading cycle but also a function of applied stress level and thickness of the specimen. Using this concept, a practical and applicable method for predicting fatigue life is established. The method requires two distinct parameters that arise from the mathematical formulation. These two parameters are determined in two ways. In one case, the parameters are determined using failure cycle numbers at two different stress levels. In the other case, the parameters are determined using fatigue modulus values at two different cycles at a particular stress level. These material parameters have been determined experimentally using both the procedures. Utilizing the experimental data two appropriate functions for these two material parameters were obtained and incorporated into the life prediction equation. Fatigue life predictions using this method have been found to be within 10 percent of the experimental values. [S0094-4289(00)02404-X]

1.
Chang
,
F. H.
et al.
,
1976
, “
Real-Time Characterization of Damage Growth in graphite/Epoxy Laminates
,”
J. Compos. Mater.
,
10
, pp.
182
192
.
2.
Atodaria, D. R., Putatunda, S. K., and Donlon, W., 1995, “Fatigue Crack Growth Behavior of Carbon Fiber Reinforced Polymer Composite Polyether-Ether Ketone (PEEK),” Proceedings of the Tenth International Conference on Composite Materials (ICCM-10), Volume 1: Fatigue Fract., pp. 665–672.
3.
Hahn, H. T., and Hwang, D. G., 1982, “Fatigue Characterization of A Graphite/Epoxy Laminate through Proof Testing,” Composite Materials: Testing and Design (Sixth Conference), ASTM STP 787, Daniel, I. M., ed., pp. 247–273.
4.
O’Brien
,
T. K.
, and
Reifsnider
,
K. L.
,
1981
, “
Fatigue damage evaluation through stiffness measurements in Boron-Epoxy Laminates
,”
J. Compos. Mater.
,
15
, pp.
55
70
.
5.
Wang
,
S. S.
, and
Chim
,
E. S. M.
,
1983
, “
Fatigue Damage and Degradation in Random Short-Fiber SMC Composites
,”
J. Compos. Mater.
,
17
, pp.
114
134
.
6.
Wang
,
S. S.
,
Goetz
,
P. P.
, and
Corten
,
H. T.
,
1984
, “
Shear Fatigue Degradation and Fracture of Random Short-Fiber SMC Composites
,”
J. Compos. Mater.
,
18
, pp.
2
20
.
7.
Chou
,
P. C.
, and
Croman
,
R.
,
1978
, “
Residual Strength in Fatigue Based on the Strength-Life Equal Rank Assumption
,”
J. Compos. Mater.
,
12
, pp.
177
194
.
8.
Reifsnider, K. L., and Stinchcomb, W. W., 1986, “A Critical Element Model of the Residual Strength and Life of Fatigue-Loaded Composite Coupons,” Composite Materials Fatigue and Fracture, ASTM STP 907, Hahn, H. T., ed., pp. 298–313.
9.
Hahn
,
H. T.
, and
Kim
,
R. Y.
,
1976
, “
Fatigue Behavior of Composite Laminates
,”
J. Compos. Mater.
,
10
, pp.
156
180
.
10.
Poursartip
,
A.
,
Ashby
,
M. F.
, and
Beaumont
,
P. W. R.
,
1986
, “
The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I-Development of the Model
,”
J. Compos. Sci. Technol.
,
25
, pp.
193
218
.
11.
Poursartip
,
A.
,
Ashby
,
M. F.
, and
Beaumont
,
P. W. R.
,
1986
, “
The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: II-Life Prediction
,”
J. Compos. Sci. Technol.
,
25
, p.
283
283
.
12.
Hwang
,
W.
, and
Han
,
K. S.
,
1986
, “
Fatigue of Composites-Fatigue Modulus Concept and Life Prediction
,”
J. Compos. Mater.
,
20
, pp.
154
165
.
13.
Agarwal
,
B. D.
, and
Dally
,
J. W.
,
1975
, “
Prediction of Low-Cycle Fatigue Behavior of GFRP and Experimental Approach
,”
J. Mater. Sci.
,
10
, pp.
193
199
.
14.
Harik, V. M., Klinger, J. R., Fink, B. K., Bogetti, T. A., Paesano, A., and Gillespie, Jr., J. W., 1999, “Low Cycle Fatigue of Unidirectional Glass/Epoxy Composites,” Durability and Damage Tolerance of Composite Materials and Structures, MD-Vol. 86/AMD-Vol. 232, pp. 79–85, ASME.
15.
Talreja, R., and Akshantala, N. V., 1999, “A Micromechanics Based Model for Predicting Fatigue Life of Composite Laminates,” J. Mater. Sci. Eng., to appear.
16.
Reifsnider, K. L., 1997, “Test Methods and Accelerated Testing for Life Prediction of Composite Systems,” Composites and Functionally Graded Materials, MD-Vol. 80, pp. 213–221.
17.
Mahfuz
,
H.
,
Maniruzzaman
,
M.
,
Krishnagopalan
,
J.
,
Haque
,
A.
,
Ismail
,
M.
, and
Jeelani
,
S. A.
,
1995
, “
Fatigue Damage and Effects of Stress Ratio on the Fatigue Life of Carbon–Carbon Composites
,”
J. Theoret. Appl. Fract. Mech.
,
24
, pp.
21
31
.
18.
Bonora, N., and Newaz, G. M., 1997, “A Fatigue Life Model for Polymeric Composites,” Proceedings of the American Society for Composites, Twelfth Technical Conference, pp. 345–353.
19.
Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction,” Composite Materials: Fatigue and Fracture, Second Volume, ASTM STP 1012, pp. 87–102.
20.
Foulk, J. W., Helms, K. L. E., and Allen, D. H., 1997, “Life Prediction in Continuous Fiber Metal Matrix Composites,” Proceedings of the American Society for Composites, Twelfth Technical Conference, pp. 354–366.
21.
Reddy, J. N., 1984, Energy and Variational Methods in Applied Mechanics, Wiley, New York.
22.
Librescu, L., 1975, Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands.
23.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
, pp.
745
752
.
24.
Reddy
,
J. N.
,
1984
, “
A Refined Nonlinear Theory of Plates with Transverse Shear Deformation
,”
Int. J. Solids Struct.
,
20
, pp.
881
896
.
You do not currently have access to this content.