This paper presents the theoretical predictions of the stress state at the inclusion-matrix interface in discontinuous metal matrix composites by the generalized inclusion method. In the author’s previous works, this method had been extended to the elastoplastic deformation in the matrix material. The present analysis of the ellipsoidal inclusion problem indicates that the regions at the pole and the equator of the particle/matrix interface essentially remain elastic regardless of the level of deformation, although the size of the elastic region keeps decreasing as deformation becomes larger. It was also found that, when the composite is undergoing a relatively large plastic deformation (strain), the maximum interfacial normal stress is approximately linearly dependent upon the von Mises stress and the hydrostatic stress. Based on the stress criterion for void nucleation, the author determined the void nucleation loci and nucleation strain for a composite subjected to an axisymmetric macroscopic stress state. The influence of interfacial bonding strength, inclusion shape, and volume fraction on the occurrence of void nucleation have been determined. The interfacial bonding strength in a SiC-aluminum system was re-evaluated by using existing experimental evidence. [S0094-4289(00)01301-3]

1.
Fisher, J. R., and Gurland J., 1981, “Void Nucleation in Spheroidized Carbon Steels Part 2: Model,” Metal Sci., pp. 193–202.
2.
Brown
,
L. M.
, and
Stobbs
,
W. M.
1971
, “
The Work-hardening of Copper-Silica. I. A Model Based on Internal Stresses, with no Plastic Relaxation: II. The Role of Plastic Relaxation
,”
Philos. Mag.
,
23
, pp.
1185
1233
.
3.
Goods
,
S. H.
, and
Brown
,
L. M.
1979
, “
The Nucleation of Cavities by Plastic Deformation
,”
Acta Metall.
,
27
, pp.
1
15
.
4.
Argon
,
A. S.
,
Im
,
J.
, and
Safoglu
,
R.
,
1975
, “
Cavity Formation from Inclusions in Ductile Fracture
,”
Metall. Trans.
,
6A
, pp.
825
837
.
5.
Hunt Jr., W. H., Richmond, O., and Young, R. D., 1989, “Fracture Initiation in Particle Hardened Materials with High Volume Fraction,” ICCM/VI, 2, pp. 2.209–223
6.
Embury
,
J. D.
,
1985
, “
Plastic Flow in Dispersion Hardened Materials
,”
Metall. Trans.
,
16A
, p.
2191
2191
.
7.
LeRoy
,
G.
,
Embury
,
J. D.
,
Edward
,
G.
, and
Ashby
,
M. F.
,
1981
, “
A Model of Ductile Fracture Based on the Nucleation and Growth of Voids
,”
Acta Metall.
,
29
, pp.
1509
1522
.
8.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
9.
Tszeng
,
T. C.
,
1993
, “
A Model of Void Nucleation from Ellipsoidal Inclusions
,”
Scr. Metall. Mater.
,
28
, pp.
1065
1070
.
10.
Tvergaard
,
V.
,
1990
, “
Analysis of Tensile Properties for a Whisker-Reinforced Metal-Matrix Composite
,”
Acta Metall. Mater.
,
38
, pp.
185
194
.
11.
Weng
,
B. J.
,
Chang
,
S. T.
, and
Shiau
,
J. S.
,
1992
, “
Microfracture Mechanisms of SiC-6061 Aluminum Composites after Hipping
,”
Scr. Metall. Mater.
,
27
, pp.
1127
1132
.
12.
Lloyd
,
D. J.
,
1989
, “
The Solidification Microstructure of Particulate Reinforced Aluminum/SiC Composites
,”
Compos. Sci. Technol.
,
35
, pp.
159
179
.
13.
Barnes
,
S. J.
,
Prangnell
,
P. B.
,
Roberts
,
S. M.
, and
Withers
,
P. J.
,
1995
, “
The Influence of Temperature on Microstructural Damage During Uniaxial Compression of Aluminum Matrix Composites
,”
Scr. Metall. Mater.
,
33
, pp.
323
329
.
14.
Christman
,
T.
, and
Suresh
,
S.
,
1988
, “
Effects of SiC Reinforcement and Aging Treatment on Fatigue Crack Growth in an Al-SiC Composite
,”
Mater. Sci. Eng.
,
A102
, pp.
211
216
.
15.
Vasudevan
,
A. K.
,
Richmond
,
O.
,
Zok
,
F.
, and
Embury
,
D.
,
1989
, “
The Influence of Hydrostatic Pressure on the Ductility of Al-SiC Composites
,”
Mater. Sci. Eng.
,
A107
, pp.
63
69
.
16.
Thomson
,
R. D.
, and
Hancock
,
J. W.
,
1984
, “
Local Stress and Strain Fields near a Spherical Elastic Inclusion in a Plastically Deforming Matrix
,”
Int. J. Fract.
,
24
, pp.
209
228
.
17.
Flom
,
Y.
, and
Arsenault
,
R. J.
,
1986
, “
Interfacial Bond Strength in an Aluminum Alloy 6061-SiC Composite
,”
Mater. Sci. Eng.
,
77
, pp.
191
197
.
18.
Tszeng
,
T. C.
,
1994
, “
Micromechanics Characterization of Unidirectional Composites during Multiaxial Plastic Deformation
,”
J. Compos. Mater.
,
28
, pp.
800
820
.
19.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
A241
, pp.
376
396
.
20.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusion
,”
Acta Metall.
,
21
, p.
571
571
.
21.
Tszeng
,
T. C.
,
1994
, “
Micromechanics of Partially Aligned Short Fiber Composites with Reference to Deformation Processing
,”
Compos. Sci. Technol.
,
51
, pp.
75
84
.
22.
Christensen
,
R. M.
,
1990
, “
A Critical Evaluation for a Class of Micromechanics Models
,”
J. Mech. Phys. Solids
,
38
, pp.
379
404
.
23.
Christman
,
T.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1989
, “
An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites
,”
Acta. Metall.
,
37
, pp.
3029
3050
.
24.
Goodier
,
J. N.
,
1933
,
ASME J. Appl. Mech.
,
55
, pp.
39
44
(see Thomson and Hancock, 1984)
25.
Orr
,
J.
, and
Brown
,
D. K.
,
1974
, “
Elasto-Plastic Solution for a Cylindrical Inclusion in Plane Strain
,”
Eng. Fract. Mech.
,
6
, pp.
261
274
.
26.
Mochida
,
T.
,
Taya
,
M.
, and
Lloyd
,
D. J.
,
1991
, “
Fracture of Particles in a Particle/Metal Matrix Composite under Plastic Straining and Its Effect on the Young’s Modulud of the Composite
,”
Mater. Trans., JIM
,
32
, pp.
931
942
.
27.
Rack, H. J., and Rathaparkhi, P., 1988, “Damage Tolerance in Discontinuously Reinforced Metal-Matrix Composites,” J. Met., pp. 55–57.
28.
Dieter, G. E., 1976, Mechanical Metallurgy, 2nd edition, McGraw-Hill, New York.
29.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States
,”
J. Mech. Phys. Solids
,
24
, pp.
147
169
.
You do not currently have access to this content.