The average thermally induced electroelastic fields and the effective thermal expansion and pyroelectric coefficients of two-phase composite materials are obtained by applying the Mori-Tanaka mean-field theory to the coupled response of electroelastic composites through a field superposition scheme. Results are obtained for composites reinforced by ellipsoidal piezoelectric and pyroelectric inhomogeneities and thus are applicable to a wide range of microstructural geometry including lamina, spherical particle, and continuous fiber reinforcement. The results are shown to obey the recently derived Levin-type equations relating the effective thermal expansion and pyroelectric coefficients of a two-phase composite to those of the constituents and the electroelastic moduli of the constituents and the composite. The analysis is developed in a matrix formulation convenient for numerical computation in which the electroelastic (elastic, piezoelectric, and dielectric) moduli are represented by a 9×9 matrix and the thermal expansion and pyroelectric coefficients by a 9×1 column vector. A limited parametric study is performed to illustrate the interesting behavior exhibited by some typical composite microstructures. Finally, analytical predictions are examined in light of existing experimental observations.

This content is only available via PDF.
You do not currently have access to this content.