Cut-away tools have a strong tendency to produce a complicated plastic flow ahead of the restricted tool-chip contact area as far as the restriction is in effect. The paper stresses the importance of the plastic field for better understanding the machining characteristics with cut-away tools. By applying the theory of ideal plasticity, the plastic field is found to be composed of one centered fan and two straight slip-line fields. The stress and velocity fields are then calculated based upon the construction of slip lines. The plastic deformation during chip-forming process is obtained analytically as a deformed pattern of originally square grids printed on the side of workpiece. The analytical pattern is verified to be in good agreement with the pattern actually produced in experiments. A quantitative analysis for variation of coefficient of friction on rake face with the artificial reduction of tool-chip contact area is proposed, in comparison with experimental results. The experimental results appear to support the analysis.

This content is only available via PDF.
You do not currently have access to this content.