Abstract

Utilizing material extrusion three-dimensional printing methods, particularly fused filament fabrication (FFF), allows for the creation of complex architectures. Nevertheless, FFF-fabricated structures often suffer from inadequate mechanical properties and elevated surface roughness. In this study, we developed an embedded FFF (e-FFF) approach to produce thermoplastic products with enhanced mechanical characteristics and improved surface quality. This approach was achieved through the development of a thermostable yield-stress fluid made from fumed silica particles and sunflower oil. By tuning the rheological properties of the support bath, thermoplastic filaments were effectively supported in a molten state throughout printing. Biocompatible and biodegradable polycaprolactone (PCL) was selected as the exemplary thermoplastic polymer in this work. Filaments, single-layer sheets, and tensile test samples were printed to fine-tune the printing parameters, assess surface morphology, and certify the mechanical properties of structures printed by e-FFF. To demonstrate the potential biomedical applications of the approach, an orbital implant model was designed using numerical simulation to evaluate mechanical integrity. Then, the orbital implant was printed and measured to confirm the effectiveness of the proposed e-FFF approach. Lastly, cells were successfully incubated on the PCL implant, which was affixed to a mock orbital fracture to confirm that patient-specific orbital implants could be fabricated.

References

1.
Qamar Tanveer
,
M.
,
Mishra
,
G.
,
Mishra
,
S.
, and
Sharma
,
R.
,
2022
, “
Effect of Infill Pattern and Infill Density on Mechanical Behaviour of FDM 3D Printed Parts-a Current Review
,”
Mater. Today: Proc.
,
62
(
1
), pp.
100
108
.
2.
Khan
,
S.
,
Joshi
,
K.
, and
Deshmukh
,
S.
,
2022
, “
A Comprehensive Review on Effect of Printing Parameters on Mechanical Properties of FDM Printed Parts
,”
Mater. Today: Proc.
,
50
(
5
), pp.
2119
2127
.
3.
Kim
,
S. Y.
,
2019
, “
Application of the Three-Dimensionally Printed Biodegradable Polycaprolactone (PCL) Mesh in Repair of Orbital Wall Fractures
,”
J. Cranio-Maxillofacial Surg.
,
47
(
7
), pp.
1065
1071
.
4.
Radhika
,
C.
,
Shanmugam
,
R.
,
Ramoni
,
M.
, and
Gnanavel
,
B.
,
2024
, “
A Review on Additive Manufacturing for Aerospace Application
,”
Mater. Res. Exp.
,
11
(
2
), p.
022001
.
5.
Stano
,
G.
, and
Percoco
,
G.
,
2021
, “
Additive Manufacturing Aimed to Soft Robots Fabrication: A Review
,”
Extreme Mech. Lett.
,
42
, p.
101079
.
6.
Mitchell
,
K.
,
Urade
,
S.
,
Kershaw
,
A.
,
Chu
,
P.
, and
Jin
,
Y.
,
2023
, “
3D Printing of Conical Centrifuge System for Mineral Particle Separation
,”
Sep. Purif. Technol.
,
306
, p.
122567
.
7.
Arrigo
,
R.
, and
Frache
,
A.
,
2022
, “
FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior
,”
Polymers
,
14
(
9
), p.
1754
. /10.3390/polym14091754
8.
Rajpurohit
,
S. R.
, and
Dave
,
H. K.
,
2018
, “
Effect of Process Parameters on Tensile Strength of FDM Printed PLA Part
,”
Rapid Prototyp. J.
,
24
(
8
), pp.
1317
1324
.
9.
Garg
,
A.
, and
Bhattacharya
,
A.
,
2017
, “
An Insight to the Failure of FDM Parts Under Tensile Loading: Finite Element Analysis and Experimental Study
,”
Int. J. Mech. Sci.
,
120
, pp.
225
236
.
10.
Mendricky
,
R.
, and
Fris
,
D.
,
2020
, “
Analysis of the Accuracy and the Surface Roughness of FDM/FFF Technology and Optimisation of Process Parameters
,”
Tehnički Vjesnik
,
27
(
4
), pp.
1166
1173
.
11.
Khan
,
M.
, and
Mishra
,
S.
,
2020
, “
Minimizing Surface Roughness of ABS-FDM Build Parts: An Experimental Approach
,”
Mater. Today: Proc.
,
26
(
2
), pp.
1557
1566
.
12.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Godina
,
B.
,
Zhao
,
D.
,
Zhou
,
W.
, and
Jin
,
Y.
,
2021
, “
Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages
,”
ACS Biomater. Sci. Eng.
,
7
(
10
), pp.
4736
4756
.
13.
Friedrich
,
L. M.
, and
Seppala
,
J. E.
,
2021
, “
Simulated Filament Shapes in Embedded 3D Printing
,”
Soft Matter
,
17
(
35
), pp.
8027
8046
.
14.
Wu
,
Q.
,
Song
,
K.
,
Zhang
,
D.
,
Ren
,
B.
,
Sole-Gras
,
M.
,
Huang
,
Y.
, and
Yin
,
J.
,
2022
, “
Embedded Extrusion Printing in Yield-Stress-Fluid Baths
,”
Matter
,
5
(
11
), pp.
3775
3806
.
15.
Mitchell
,
K.
,
Hua
,
W.
,
Bandala
,
E.
,
Gaharwar
,
A. K.
, and
Jin
,
Y.
,
2024
, “
Particle–Polymer Interactions for 3D Printing Material Design
,”
Chem. Phys. Rev.
,
5
(
1
).
16.
Brunel
,
L. G.
,
Hull
,
S. M.
, and
Heilshorn
,
S. C.
,
2022
, “
Engineered Assistive Materials for 3D Bioprinting: Support Baths and Sacrificial Inks
,”
Biofabrication
,
14
(
3
), p.
032001
.
17.
Ding
,
H.
, and
Chang
,
R. C.
,
2018
, “
Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath
,”
Appl. Sci.
,
8
(
3
), p.
403
.
18.
Stojkov
,
G.
,
Niyazov
,
Z.
,
Picchioni
,
F.
, and
Bose
,
R. K.
,
2021
, “
Relationship Between Structure and Rheology of Hydrogels for Various Applications
,”
Gels
,
7
(
4
), p.
255
.
19.
Jin
,
Y.
,
Song
,
K.
,
Gellermann
,
N.
, and
Huang
,
Y.
,
2019
, “
Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension
,”
ACS Appl. Mater. Interfaces
,
11
(
32
), pp.
29207
29217
.
20.
Huang
,
K.
,
Elsayed
,
H.
,
Franchin
,
G.
, and
Colombo
,
P.
,
2021
, “
Embedded Direct Ink Writing of Freeform Ceramic Components
,”
Appl. Mater. Today
,
23
, p.
101005
.
21.
O’Bryan
,
C. S.
,
Bhattacharjee
,
T.
,
Hart
,
S.
,
Kabb
,
C. P.
,
Schulze
,
K. D.
,
Chilakala
,
I.
,
Sumerlin
,
B. S.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2017
, “
Self-Assembled Micro-Organogels for 3D Printing Silicone Structures
,”
Sci. Adv.
,
3
(
5
), p.
e1602800
.
22.
Kim
,
J. H.
,
Lee
,
I. G.
,
Lee
,
J. S.
,
Oh
,
D. Y.
,
Jun
,
Y. J.
,
Rhie
,
J. W.
,
Shim
,
J. H.
, and
Moon
,
S. H.
,
2020
, “
Restoration of the Inferomedial Orbital Strut Using a Standardized Three-Dimensional Printing Implant
,”
J. Anat.
,
236
(
5
), pp.
923
930
.
23.
Lopes
,
M. S.
,
Jardini
,
A.
, and
Maciel Filho
,
R.
,
2012
, “
Poly (Lactic Acid) Production for Tissue Engineering Applications
,”
Procedia Eng.
,
42
, pp.
1402
1413
.
24.
Bachelet
,
J.-T.
,
Cordier
,
G.
,
Porcheray
,
M.
,
Bourlet
,
J.
,
Gleizal
,
A.
, and
Foletti
,
J.-M.
,
2018
, “
Orbital Reconstruction by Patient-Specific Implant Printed in Porous Titanium: A Retrospective Case Series of 12 Patients
,”
J. Oral Maxillofac. Surg.
,
76
(
10
), pp.
2161
2167
.
25.
Seen
,
S.
,
Young
,
S.
,
Lang
,
S. S.
,
Lim
,
T.-C.
,
Amrith
,
S.
, and
Sundar
,
G.
,
2021
, “
Orbital Implants in Orbital Fracture Reconstruction: A Ten-Year Series
,”
Craniomaxillofac. Trauma Reconstr.
,
14
(
1
), pp.
56
63
.
26.
Le Clerc
,
N.
,
Baudouin
,
R.
,
Carlevan
,
M.
,
Khoueir
,
N.
,
Verillaud
,
B.
, and
Herman
,
P.
,
2020
, “
3D Titanium Implant for Orbital Reconstruction After Maxillectomy
,”
J. Plast. Reconstr. Aesthet. Surg.
,
73
(
4
), pp.
732
739
.
27.
Lai
,
K. K.
,
Lam
,
M. C.
,
Chong
,
K. K.
, and
Yuen
,
H. K.
,
2023
, “
Burnishing of Exposed Porous Polyethylene Orbital Implant: Is It Useful?
,”
Can. J. Ophthalmol.
,
59
(
3
), pp.
e239
e244
28.
Demir
,
,
Yaşar
,
E. K.
,
Arıcı
,
Z.
, and
Alagöz
,
,
2022
, “
Porous Polyethylene Implants in Orbital Floor Reconstruction: Outcome and Complications
,”
Kocaeli Med. J.
,
11
(
2
), pp.
114
121
.
29.
Young
,
S. M.
,
Sundar
,
G.
,
Lim
,
T.-C.
,
Lang
,
S. S.
,
Thomas
,
G.
, and
Amrith
,
S.
,
2017
, “
Use of Bioresorbable Implants for Orbital Fracture Reconstruction
,”
Br. J. Ophthalmol.
,
101
(
8
), pp.
1080
1085
.
30.
Afghah
,
F.
,
Altunbek
,
M.
,
Dikyol
,
C.
, and
Koc
,
B.
,
2020
, “
Preparation and Characterization of Nanoclay-Hydrogel Composite Support-Bath for Bioprinting of Complex Structures
,”
Sci. Rep.
,
10
(
1
), p.
5257
.
31.
Hua
,
W.
,
Mitchell
,
K.
,
Raymond
,
L.
,
Valentin
,
N.
,
Coulter
,
R.
, and
Jin
,
Y.
,
2023
, “
Embedded 3D Printing of PDMS-Based Microfluidic Chips for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
145
(
1
), p.
011002
.
32.
Hua
,
W.
,
Mitchell
,
K.
,
Kariyawasam
,
L. S.
,
Do
,
C.
,
Chen
,
J.
,
Raymond
,
L.
,
Valentin
,
N.
,
Coulter
,
R.
,
Yang
,
Y.
, and
Jin
,
Y.
,
2022
, “
Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid With an Interactive Dual Microstructure
,”
ACS Appl. Mater. Interfaces
,
14
(
34
), pp.
39420
39431
.
33.
Prendergast
,
M. E.
, and
Burdick
,
J. A.
,
2022
, “
Computational Modeling and Experimental Characterization of Extrusion Printing Into Suspension Baths
,”
Adv. Healthcare Mater.
,
11
(
7
), p.
2101679
.
34.
Li
,
Q.
,
Ma
,
L.
,
Gao
,
Z.
,
Yin
,
J.
,
Liu
,
P.
,
Yang
,
H.
,
Shen
,
L.
, and
Zhou
,
H.
,
2022
, “
Regulable Supporting Baths for Embedded Printing of Soft Biomaterials With Variable Stiffness
,”
ACS Appl. Mater. Interfaces
,
14
(
37
), pp.
41695
41711
.
35.
Baptista
,
C.
,
Azagury
,
A.
,
Shin
,
H.
,
Baker
,
C. M.
,
Ly
,
E.
,
Lee
,
R.
, and
Mathiowitz
,
E.
,
2020
, “
The Effect of Temperature and Pressure on Polycaprolactone Morphology
,”
Polymer
,
191
, p.
122227
.
36.
Shahverdi
,
M.
,
Seifi
,
S.
,
Akbari
,
A.
,
Mohammadi
,
K.
,
Shamloo
,
A.
, and
Movahhedy
,
M. R.
,
2022
, “
Melt Electrowriting of PLA, PCL, and Composite PLA/PCL Scaffolds for Tissue Engineering Application
,”
Sci. Rep.
,
12
(
1
), p.
19935
.
37.
Bulut
,
E.
, and
Yılmaz
,
E.
,
2010
, “
Comparison of the Frying Stability of Sunflower and Refined Olive Pomace Oils With/Without Adsorbent Treatment
,”
J. Am. Oil Chem. Soc.
,
87
(
10
), pp.
1145
1153
.
38.
Whitby
,
C. P.
,
2020
, “
Structuring Edible Oils With Fumed Silica Particles
,”
Front. Sustainable Food Syst.
,
4
, p.
585160
.
39.
Whitby
,
C. P.
,
Krebsz
,
M.
, and
Booty
,
S. J.
,
2018
, “
Understanding the Role of Hydrogen Bonding in the Aggregation of Fumed Silica Particles in Triglyceride Solvents
,”
J. Colloid Interface Sci.
,
527
, pp.
1
9
.
40.
Jin
,
Y.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Printability Study of Hydrogel Solution Extrusion in Nanoclay Yield-Stress Bath During Printing-Then-Gelation Biofabrication
,”
Mater. Sci. Eng.: C
,
80
, pp.
313
325
.
41.
Peng
,
W.
,
Bin
,
Z.
,
Shouling
,
D.
,
Lei
,
L.
, and
Huang
,
C.
,
2021
, “
Effects of FDM-3D Printing Parameters on Mechanical Properties and Microstructure of Cf/Peek and Gf/Peek
,”
Chin. J. Aeronaut.
,
34
(
9
), pp.
236
246
.
42.
Seppala
,
J. E.
,
Han
,
S. H.
,
Hillgartner
,
K. E.
,
Davis
,
C. S.
, and
Migler
,
K. B.
,
2017
, “
Weld Formation During Material Extrusion Additive Manufacturing
,”
Soft Matter
,
13
(
38
), pp.
6761
6769
.
43.
Gao
,
X.
,
Qi
,
S.
,
Kuang
,
X.
,
Su
,
Y.
,
Li
,
J.
, and
Wang
,
D.
,
2021
, “
Fused Filament Fabrication of Polymer Materials: A Review of Interlayer Bond
,”
Addit. Manuf.
,
37
, p.
101658
.
44.
Yang
,
F.
, and
Pitchumani
,
R.
,
2002
, “
Healing of Thermoplastic Polymers at an Interface Under Nonisothermal Conditions
,”
Macromolecules
,
35
(
8
), pp.
3213
3224
.
45.
Narayanan
,
L. K.
, and
Shirwaiker
,
R. A.
,
2020
, “
Experimental Characterization and Finite Element Modeling of the Effects of 3D Bioplotting Process Parameters on Structural and Tensile Properties of Polycaprolactone (PCL) Scaffolds
,”
Appl. Sci.
,
10
(
15
), p.
5289
.
46.
Harman
,
M.
,
Champaigne
,
K.
,
Cobb
,
W.
,
Lu
,
X.
,
Chawla
,
V.
,
Wei
,
L.
,
Luzinov
,
I.
,
Mefford
,
O. T.
, and
Nagatomi
,
J.
,
2023
, “
A Novel Bio-Adhesive Mesh System for Medical Implant Applications: In Vivo Assessment in a Rabbit Model
,”
Gels
,
9
(
5
), p.
372
.
47.
Yang
,
J.-H.
,
Chang
,
S. C.
,
Shin
,
J. Y.
,
Roh
,
S.-G.
, and
Lee
,
N.-H.
,
2018
, “
Use of Resorbable Mesh and Fibrin Glue for Restoration in Comminuted Fracture of Anterior Maxillary Wall
,”
Arch. Craniofac. Surg.
,
19
(
3
), p.
175
180
.
48.
Yoo
,
J. H.
,
Lee
,
Y. H.
,
Lee
,
H.
,
Kim
,
J. W.
,
Chang
,
M.
,
Park
,
M.
, and
Baek
,
S.
,
2013
, “
Correlation Between Orbital Volume, Body Mass Index, and Eyeball Position in Healthy East Asians
,”
J. Craniofac. Surg.
,
24
(
3
), pp.
822
825
.
49.
Bhardwaj
,
R.
,
Ziegler
,
K.
,
Seo
,
J. H.
,
Ramesh
,
K.
, and
Nguyen
,
T. D.
,
2014
, “
A Computational Model of Blast Loading on the Human Eye
,”
Biomech. Model. Mechanobiol.
,
13
, pp.
123
140
.
50.
Voss
,
A. K.
, and
Strasser
,
A.
,
2020
, “
The Essentials of Developmental Apoptosis
,”
F1000Research
,
9
, p.
148
.
51.
Kroemer
,
G.
,
El-Deiry
,
W. S.
,
Golstein
,
P.
,
Peter
,
M. E.
,
Vaux
,
D.
,
Vandenabeele
,
P.
,
Zhivotovsky
,
B.
, et al
,
2005
, “
Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death
,”
Cell Death Differ.
,
12
(
S2
), pp.
1463
1467
.
52.
Teo
,
L.
,
Teoh
,
S. H.
,
Liu
,
Y.
,
Lim
,
L.
,
Tan
,
B.
,
Schantz
,
J.-T.
, and
Seah
,
L. L.
,
2015
, “
A Novel Bioresorbable Implant for Repair of Orbital Floor Fractures
,”
Orbit
,
34
(
4
), pp.
192
200
.
53.
Abd Razak
,
S. I.
,
Ahmad Sharif
,
N.
, and
Abdul Rahman
,
W.
,
2012
, “
Recent Advances in Biodegradable Polymers for Sustainable Applications
,”
Int. J. Basic Appl. Sci.
,
12
, pp.
31
49
.
You do not currently have access to this content.