Graphical Abstract Figure

Comparison of the experimental results and the FE model with and without using GTN for (a) FFF and (b) wrought 17-4 PH stainless steel

Graphical Abstract Figure

Comparison of the experimental results and the FE model with and without using GTN for (a) FFF and (b) wrought 17-4 PH stainless steel

Close modal

Abstract

Metal additive manufacturing is an emerging technology for creating metallic parts, with metal fused filament fabrication (FFF) rapidly gaining popularity due to its cost-effectiveness. Despite the acceptable mechanical properties of additively manufactured metals using FFF, a significant technical challenge is the presence of undesirable porosity, which affects material performance. This study aims to model the material behavior of FFF 17-4 PH stainless steel, considering its porosity, using the Gurson–Tvergaard–Needleman (GTN) damage model. The GTN model, which incorporates the micromechanical behavior of ductile metals, shows great potential for failure prediction. The GTN model parameters were identified for both wrought and FFF 17-4 PH stainless steel through a series of proposed methods. Initial void volume fractions were determined using density measurements. The evolution of void volume fractions was experimentally assessed through interrupted uniaxial tensile tests, leading to the analytical derivation of three void nucleation parameters based on continuum damage mechanics. Additional GTN model parameters related to material failure were determined through microscopic analysis of rupture surfaces and finite element (FE) trial-and-error methods. FE simulations using the GTN damage model, represented as porous metal plasticity in abaqus, were conducted to verify the identified parameters. The results demonstrated that the numerical calculations of the FE model are in good agreement with the experimental data. The use of experimentally derived GTN model parameters from the proposed methods effectively predicts material behavior, particularly in the post-necking region where traditional FE modeling fails to simulate the realistic material response.

References

1.
Batish
,
S. K.
,
Rupinder
,
S.
,
Singh
,
T. P.
, and
Batish
,
A.
,
2023
, “
Fused Filament Fabrication: A Comprehensive Review
,”
J. Thermoplast. Compos. Mater.
,
36
(
2
), pp.
794
814
.
2.
Tosto
,
C.
,
Tirillò
,
J.
,
Sarasini
,
F.
, and
Cicala
,
G.
,
2021
, “
Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts
,”
Appl. Sci.
,
11
(
4
), p.
1444
.
3.
Damon
,
J.
,
Dietrich
,
S.
,
Gorantla
,
S.
,
Popp
,
U.
,
Okolo
,
B.
, and
Schulze
,
V.
,
2019
, “
Process Porosity and Mechanical Performance of Fused Filament Fabricated 316L Stainless Steel
,”
Rapid Prototyp. J.
,
25
(
7
), pp.
1319
1327
.
4.
Nouri
,
H.
,
Guessasma
,
S.
, and
Belhabib
,
S.
,
2016
, “
Structural Imperfections in Additive Manufacturing Perceived From the X-ray Micro-Tomography Perspective
,”
J. Mater. Process. Technol.
,
234
, pp.
113
124
.
5.
Sommacal
,
S.
,
Matschinski
,
A.
,
Drechsler
,
K.
, and
Compston
,
P.
,
2021
, “
Characterisation of Void and Fiber Distribution in 3D Printed Carbon-Fiber/PEEK Using X-ray Computed Tomography
,”
Compos. Part A: Appl. Sci. Manuf.
,
149
, p.
106487
.
6.
Hernandez-Contreras
,
A.
,
Ruiz-Huerta
,
L.
,
Caballero-Ruiz
,
A.
,
Moock
,
V.
, and
Siller
,
H. R.
,
2020
, “
Extended CT Void Analysis in FDM Additive Manufacturing Components
,”
Materials
,
13
(
17
), p.
3831
.
7.
Lavecchia
,
F.
,
Pellegrini
,
A.
, and
Galantucci
,
L. M.
,
2023
, “
Comparative Study on the Properties of 17-4 PH Stainless Steel Parts Made by Metal Fused Filament Fabrication Process and Atomic Diffusion Additive Manufacturing
,”
Rapid Prototyp. J.
,
29
(
2
), pp.
393
407
.
8.
Lozhkomoev
,
A. S.
,
Krinitcyn
,
M. G.
,
Kazantsev
,
S. O.
,
Vornakova
,
E. A.
,
Svarovskaya
,
N. V.
, and
Glazkova
,
E. A.
,
2024
, “
Development of Approaches for Forming Complex Profile Parts From Al–Cu Alloys Using the Metal Fused Filament Fabrication Technology
,”
Prog. Addit. Manuf.
, pp.
1
8
.
9.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I. Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
10.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
11.
Springman
,
M.
, and
Kuna
,
M.
,
2005
, “
Identification of Material Parameters of the Gurson–Tvergaard–Needleman Model by Combined Experimental and Numerical Techniques
,”
Comput. Mater. Sci.
,
32
(
3–4
), pp.
544
552
.
12.
Acharyya
,
S.
, and
Dhar
,
S.
,
2008
, “
A Complete GTN Model for Prediction of Ductile Failure of Pipe
,”
J. Mater. Sci.
,
43
(
6
), pp.
1897
1909
.
13.
Cao
,
T.-S.
,
Maire
,
E.
,
Verdu
,
C.
,
Bobadilla
,
C.
,
Lasne
,
P.
,
Montmitonnet
,
P.
, and
Bouchard
,
P.-O.
,
2014
, “
Characterization of Ductile Damage for a High Carbon Steel Using 3D X-ray Micro-Tomography and Mechanical Tests – Application to the Identification of a Shear Modified GTN Model
,”
Comput. Mater. Sci.
,
84
, pp.
175
187
.
14.
Wcislik
,
W.
,
2016
, “
Experimental Determination of Critical Void Volume Fraction FF for the Gurson Tvergaard Needleman (GTN) Model
,”
Proc. Struct. Integr.
,
2
, pp.
1676
1683
.
15.
Isik
,
K.
,
Gerstein
,
G.
,
Clausmeyer
,
T.
,
Nürnberger
,
F.
,
Tekkaya
,
A. E.
, and
Maier
,
H. J.
,
2016
, “
Evaluation of Void Nucleation and Development During Plastic Deformation of Dual-Phase Steel DP600
,”
Steel Res. Int.
,
87
(
12
), pp.
1583
1591
.
16.
Yildiz
,
R. A.
, and
Yilmaz
,
S.
,
2020
, “
Experimental Investigation of GTN Model Parameters of 6061 Al Alloy
,”
Eur. J. Mech. - A/Solids
,
83
, p.
104040
.
17.
Zhang
,
T.
,
Lu
,
K.
,
Mano
,
A.
,
Yamaguchi
,
Y.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2021
, “
A Novel Method to Uniquely Determine the Parameters in Gurson–Tvergaard–Needleman Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
44
(
12
), pp.
3399
3415
.
18.
Öztekin
,
V.
, and
Yılmaz
,
Ş.
,
2023
, “
Experimental and Numerical Investigation of the Gurson–Tveergard–Needleman Model Parameters for AISI 1045 Steel
,”
Steel Res. Int.
,
94
(
6
), p.
2200785
.
19.
Zhang
,
T.
, and
Zhao
,
Y.
,
2023
, “
A Study on the Parameter Identification and Failure Prediction of Ductile Metals Using Gurson–Tvergaard–Needleman (GTN) Model
,”
Mater. Today Commun.
,
34
, p.
105223
.
20.
Xin
,
H.
,
Sun
,
W.
, and
Fish
,
J.
,
2017
, “
A Surrogate Modeling Approach for Additive-Manufactured Materials
,”
Int. J. Multiscale Comput. Eng.
,
15
(
6
), pp.
525
543
.
21.
Keim
,
V.
,
Cerrone
,
A.
, and
Nonn
,
A.
,
2019
, “
Using Local Damage Models to Predict Fracture in Additively Manufactured Specimens
,”
Int. J. Fract.
,
218
(
1
), pp.
135
147
.
22.
Shafaie
,
M.
,
Khademi
,
M.
,
Sarparast
,
M.
, and
Zhang
,
H.
,
2022
, “
Modified GTN Parameters Calibration in Additive Manufacturing of Ti-6Al-4V Alloy: A Hybrid ANN-PSO Approach
,”
Int. J. Adv. Manuf. Technol.
,
123
(
11
), pp.
4385
4398
.
23.
Yang
,
X.
,
Yazhi
,
L.
,
Wei
,
J.
,
Min-ge
,
D.
,
Dong
,
C.
, and
Biao
,
2021
, “
Ductile Fracture Prediction of Additive Manufactured Ti6Al4V Alloy Based on an Extended GTN Damage Model
,”
Eng. Fract. Mech.
,
256
, p.
107989
.
24.
Nahshon
,
K.
, and
Hutchinson
,
J.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. - A/Solids
,
27
(
1
), pp.
1
17
.
25.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
26.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
(
3
), pp.
249
256
.
27.
Gholipour
,
H.
,
Biglari
,
F. R.
, and
Nikbin
,
K.
,
2019
, “
Experimental and Numerical Investigation of Ductile Fracture Using GTN Damage Model on In-Situ Tensile Tests
,”
Int. J. Mech. Sci.
,
164
, p.
105170
.
28.
Chen
,
D.
,
Li
,
Y.
,
Yang
,
X.
,
Jiang
,
W.
, and
Guan
,
L.
,
2021
, “
Efficient Parameters Identification of a Modified GTN Model of Ductile Fracture Using Machine Learning
,”
Eng. Fract. Mech.
,
245
, p.
107535
.
29.
Clarke
,
T.
, and
Hosseini
,
A.
,
2023
, “
Effects of Print Parameters on Tensile Characteristics of Additively Manufactured Polyethylene Terephthalate-Glycol (PETG)
,”
Int. J. Adv. Manuf. Technol.
,
125
(
11
), pp.
4953
4974
.
30.
Vazquez-Leal
,
H.
,
Castaneda-Sheissa
,
R.
,
Filobello-Nino
,
U.
,
Sarmiento-Reyes
,
A.
, and
Sanchez Orea
,
J.
,
2012
, “
High Accurate Simple Approximation of Normal Distribution Integral
,”
Math. Probl. Eng.
,
2012
(
1
), p.
124029
.
You do not currently have access to this content.