Graphical Abstract Figure

A laser machined micro-cavity with sharp corners in fused silica

Graphical Abstract Figure

A laser machined micro-cavity with sharp corners in fused silica

Close modal

Abstract

Fused silica is an important material for applications requiring high temperature resistance, low thermal expansion coefficient, and excellent optical properties. The machining of micro-cavities on fused silica surfaces is of particular interest for micro-fluidic manipulation and miniaturization of high-quality optical waveguides, etc., but it still remains technically challenging for traditional manufacturing techniques. In the present study, machining of square cornered semienclosed micro-cavities on fused silica surfaces by femtosecond laser has been investigated experimentally. The effects of laser machining conditions including laser power, laser scanning speed, laser incidence angle, and laser-off delay time on the sidewall slope and bottom surface roughness of the micro-cavities were comprehensively investigated. The results indicated that laser power played an important role in determining the sidewall slope of the micro-cavity, while the laser scanning speed had a significant influence on the bottom surface roughness and subsurface damage. Furthermore, the sidewall slope of the micro-cavity was linearly increased as the laser incidence angle increases. By using a laser incidence angle of 10 deg and a laser-off delay time of 280 ms, a micro-cavity with sidewall slopes close to right angles (90 deg) was fabricated. This study demonstrates that femtosecond laser machining is an effective method for fabricating sharp cornered micro-cavities in fused silica, and the appropriate selection of laser machining conditions based on practical application scenarios is important.

References

1.
Li
,
X.
,
Chan
,
K. Y.
, and
Ramer
,
R.
,
2018
, “
Fabrication of Through via Holes in Ultra-Thin Fused Silica Wafers for Microwave and Millimeter-Wave Applications
,”
Micromachines
,
9
(
3
), p.
138
.
2.
Xu
,
J.
,
Pickrell
,
G.
,
Wang
,
X.
,
Peng
,
W.
,
Cooper
,
K.
, and
Wang
,
A.
,
2005
, “
A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments
,”
IEEE Photonics Technol. Lett.
,
17
(
4
), pp.
870
872
.
3.
Vlugter
,
P.
,
Block
,
E.
, and
Bellouard
,
Y.
,
2019
, “
Local Tuning of Fused Silica Thermal Expansion Coefficient Using Femtosecond Laser
,”
Phys. Rev. Mater.
,
3
(
5
), p.
053802
.
4.
Deng
,
B.
,
Shi
,
Y.
, and
Yuan
,
F.
,
2020
, “
Investigation on the Structural Origin of Low Thermal Expansion Coefficient of Fused Silica
,”
Materialia
,
12
, p.
100752
.
5.
Jang
,
H.-S.
,
Cho
,
M.-W.
, and
Park
,
D.-S.
,
2008
, “
Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting
,”
Sensors
,
8
(
2
), pp.
700
710
.
6.
Ortiz-Ricardo
,
E.
,
Bertoni-Ocampo
,
C.
,
Maldonado-Terrón
,
M.
,
Garcia Zurita
,
A.
,
Ramirez-Alarcon
,
R.
,
Cruz Ramirez
,
H.
,
Castro-Beltrán
,
R.
, and
U’Ren
,
A. B.
,
2021
, “
Submegahertz Spectral Width Photon Pair Source Based on Fused Silica Microspheres
,”
Photonic Res.
,
9
(
11
), pp.
2237
2252
.
7.
Kotz
,
F.
,
Risch
,
P.
,
Arnold
,
K.
,
Sevim
,
S.
,
Puigmartí-Luis
,
J.
,
Quick
,
A.
,
Thiel
,
M.
, et al
,
2019
, “
Fabrication of Arbitrary Three-Dimensional Suspended Hollow Microstructures in Transparent Fused Silica Glass
,”
Nat. Commun.
,
10
(
1
), p.
1439
.
8.
Shi
,
X.-L.
,
Chen
,
G.
,
Xu
,
L.
,
Kang
,
C.
,
Luo
,
G.
,
Luo
,
H.
,
Zhou
,
Y.
,
Dargusch
,
M. S.
, and
Pan
,
G.
,
2020
, “
Achieving Ultralow Surface Roughness and High Material Removal Rate in Fused Silica via a Novel Acid SiO2 Slurry and Its Chemical-Mechanical Polishing Mechanism
,”
Appl. Surf. Sci.
,
500
, p.
144041
.
9.
Pilloni
,
O.
,
Madou
,
M.
,
Mendoza
,
D.
,
Muhl
,
S.
, and
Oropeza-Ramos
,
L.
,
2019
, “
Methodology and Fabrication of Adherent and Crack-Free SU-8 Photoresist-Derived Carbon MEMS on Fused Silica Transparent Substrates
,”
J. Micromech. Microeng.
,
29
(
2
), p.
027002
.
10.
Liao
,
Y.
,
Song
,
J.
,
Li
,
E.
,
Luo
,
Y.
,
Shen
,
Y.
,
Chen
,
D.
,
Cheng
,
Y.
,
Xu
,
Z.
,
Sugioka
,
K.
, and
Midorikawa
,
K.
,
2012
, “
Rapid Prototyping of Three-Dimensional Microfluidic Mixers in Glass by Femtosecond Laser Direct Writing
,”
Lab Chip
,
12
(
4
), pp.
746
749
.
11.
Sugioka
,
K.
,
Xu
,
J.
,
Wu
,
D.
,
Hanada
,
Y.
,
Wang
,
Z.
,
Cheng
,
Y.
, and
Midorikawa
,
K.
,
2014
, “
Femtosecond Laser 3D Micromachining: A Powerful Tool for the Fabrication of Microfluidic, Optofluidic, and Electrofluidic Devices Based on Glass
,”
Lab Chip
,
14
(
18
), pp.
3447
3458
.
12.
Madani-Grasset
,
F.
, and
Bellouard
,
Y.
,
2010
, “
Femtosecond Laser Micromachining of Fused Silica Molds
,”
Opt. Express
,
18
(
21
), pp.
21826
21840
.
13.
Mishra
,
S.
,
Mitra
,
R.
, and
Vijayakumar
,
M.
,
2010
, “
Structure–Property Correlation in Cellular Silica Processed Through Hydrophobized Fused Silica Powder for Aerospace Application
,”
J. Alloy Compd.
,
504
(
1
), pp.
76
82
.
14.
Yan
,
J.
, and
Takayama
,
N.
,
2019
,
Micro and Nanoscale Laser Processing of Hard Brittle Materials
,
Elsevier
,
Amsterdam, Netherlands
.
15.
Tomkus
,
V.
,
Girdauskas
,
V.
,
Dudutis
,
J.
,
Gečys
,
P.
,
Stankevič
,
V.
, and
Račiukaitis
,
G.
,
2019
, “
Impact of the Wall Roughness on the Quality of Micrometric Nozzles Manufactured From Fused Silica by Different Laser Processing Techniques
,”
Appl. Surf. Sci.
,
483
, pp.
205
211
.
16.
Wang
,
Z. K.
,
Seow
,
W. L.
,
Wang
,
X. C.
, and
Zheng
,
H. Y.
,
2015
, “
Effect of Laser Beam Scanning Mode on Material Removal Efficiency in Laser Ablation for Micromachining of Glass
,”
J. Laser Appl.
,
27
(
S2
), p.
S28004
.
17.
Suratwala
,
T.
,
Wong
,
L.
,
Miller
,
P.
,
Feit
,
M. D.
,
Menapace
,
J.
,
Steele
,
R.
,
Davis
,
P.
, and
Walmer
,
D.
,
2006
, “
Sub-Surface Mechanical Damage Distributions During Grinding of Fused Silica
,”
J. Non-Cryst. Solids
,
352
(
52
), pp.
5601
5617
.
18.
Neauport
,
J.
,
Lamaignere
,
L.
,
Bercegol
,
H.
,
Pilon
,
F.
, and
Birolleau
,
J. C.
,
2005
, “
Polishing-Induced Contamination of Fused Silica Optics and Laser Induced Damage Density at 351 nm
,”
Opt. Express
,
13
(
25
), pp.
10163
10171
.
19.
He
,
F.
,
Lin
,
J.
, and
Cheng
,
Y.
,
2011
, “
Fabrication of Hollow Optical Waveguides in Fused Silica by Three-Dimensional Femtosecond Laser Micromachining
,”
Appl. Phys. B
,
105
(
2
), pp.
379
384
.
20.
Zhou
,
T.
,
Liu
,
X.
,
Liang
,
Z.
,
Liu
,
Y.
,
Xie
,
J.
, and
Wang
,
X.
,
2017
, “
Recent Advancements in Optical Microstructure Fabrication Through Glass Molding Process
,”
Front. Mech. Eng.
,
12
(
1
), pp.
46
65
.
21.
Ming
,
W.
,
Jia
,
H.
,
Huang
,
H.
,
Zhang
,
G.
,
Liu
,
K.
,
Lu
,
Y.
, and
Cao
,
C.
,
2021
, “
Study on Mechanism of Glass Molding Process for Fingerprint Lock Glass Plates
,”
Crystals
,
11
(
4
), p.
394
.
22.
Tan
,
C.
,
Zhao
,
L.
,
Chen
,
M.
,
Cheng
,
J.
,
Yang
,
H.
,
Liu
,
Q.
,
Yin
,
Z.
, and
Liao
,
W.
,
2021
, “
Formation Mechanism of Surface Morphology in the Process of CO2 Pulsed Laser Processing of Fused Silica Optics
,”
Opt. Laser Technol.
,
138
, p.
106838
.
23.
Yang
,
L.
,
Luo
,
X.
,
Chang
,
W.
,
Tian
,
Y.
,
Wang
,
Z.
,
Gao
,
J.
,
Cai
,
Y.
,
Qin
,
Y.
, and
Duxbury
,
M.
,
2020
, “
Manufacturing of Anti-Fogging Super-Hydrophilic Microstructures on Glass by Nanosecond Laser
,”
J. Manuf. Processes
,
59
, pp.
557
565
.
24.
He
,
F.
,
Cheng
,
Y.
,
Xu
,
Z.
,
Liao
,
Y.
,
Xu
,
J.
,
Sun
,
H.
,
Wang
,
C.
, et al
,
2010
, “
Direct Fabrication of Homogeneous Microfluidic Channels Embedded in Fused Silica Using a Femtosecond Laser
,”
Opt. Lett.
,
35
(
3
), pp.
282
284
.
25.
Sugioka
,
K.
,
Akane
,
T.
,
Obata
,
K.
,
Toyoda
,
K.
, and
Midorikawa
,
K.
,
2002
, “
Multiwavelength Excitation Processing Using F2 and KrF Excimer Lasers for Precision Microfabrication of Hard Materials
,”
Appl. Surf. Sci.
,
197–198
, pp.
814
821
.
26.
Cai
,
X.
,
Ji
,
C.
,
Li
,
C.
,
Tian
,
Z.
,
Wang
,
X.
,
Lei
,
C.
, and
Liu
,
S.
,
2021
, “
Multiphoton Absorption Simulation of Sapphire Substrate Under the Action of Femtosecond Laser for Larger Density of Pattern-Related Process Windows
,”
Micromachines
,
12
(
12
), p.
1571
.
27.
Yao
,
Y.
,
Xu
,
C.
,
Zheng
,
Y.
,
Yang
,
C.
,
Liu
,
P.
,
Jia
,
T.
,
Qiu
,
J.
,
Sun
,
Z.
, and
Zhang
,
S.
,
2016
, “
Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption
,”
J. Phys. Chem. A
,
120
(
28
), pp.
5522
5526
.
28.
Grehn
,
M.
,
Seuthe
,
T.
,
Höfner
,
M.
,
Griga
,
N.
,
Theiss
,
C.
,
Mermillod-Blondin
,
A.
,
Eberstein
,
M.
,
Eichler
,
H.
, and
Bonse
,
J.
,
2014
, “
Femtosecond-Laser Induced Ablation of Silicate Glasses and the Intrinsic Dissociation Energy
,”
Opt. Mater. Express
,
4
(
4
), pp.
689
700
.
29.
Shaheen
,
M. E.
,
Gagnon
,
J. E.
, and
Fryer
,
B. J.
,
2014
, “
Femtosecond Laser Ablation Behavior of Gold, Crystalline Silicon, and Fused Silica: a Comparative Study
,”
Laser Phys.
,
24
(
10
), p.
106102
.
30.
Dumitru
,
G.
,
Romano
,
V.
,
Weber
,
H. P.
,
Sentis
,
M.
, and
Marine
,
W.
,
2002
, “
Femtosecond Ablation of Ultrahard Materials
,”
Appl. Phys. A
,
74
(
6
), pp.
729
739
.
31.
Shimotsuma
,
Y.
,
Kazansky
,
P. G.
,
Qiu
,
J.
, and
Hirao
,
K.
,
2003
, “
Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses
,”
Phys. Rev. Lett.
,
91
(
24
), p.
247405
.
32.
Bellouard
,
Y.
,
Said
,
A.
,
Dugan
,
M.
, and
Bado
,
P.
,
2004
, “
Fabrication of High-Aspect Ratio, Micro-Fluidic Channels and Tunnels Using Femtosecond Laser Pulses and Chemical Etching
,”
Opt. Express
,
12
(
10
), pp.
2120
2129
.
33.
Yan
,
Y.
,
Zhang
,
J.
,
Xu
,
P.
, and
Miao
,
P.
,
2017
, “
Fabrication of Arrayed Triangular Micro-Cavities for SERS Substrates Using the Force Modulated Indention Process
,”
RSC Adv.
,
7
(
20
), pp.
11969
11978
.
34.
Ji
,
B.
,
Tong
,
H.
,
Han
,
X.
,
Li
,
Y.
, and
Pu
,
Y.
,
2020
, “
Energy Action Model of Spark Assisted Chemical Engraving (SACE) for Improving Surface Quality of Micro Cavities in ZrO2 Ceramics
,”
J. Micromech. Microeng.
,
30
(
8
), p.
085011
.
35.
Starke
,
R.
, and
Schober
,
G. A. H.
,
2018
, “
Why History Matters: Ab Initio Rederivation of Fresnel Equations Confirms Microscopic Theory of Refractive Index
,”
Optik
,
157
, pp.
275
286
.
36.
Sun
,
X.
,
Yu
,
J.
,
Hu
,
Y.
,
Cui
,
D.
,
Chen
,
G.
,
Chu
,
D.
, and
Duan
,
J. a.
,
2019
, “
Study on Ablation Threshold of Fused Silica by Liquid-Assisted Femtosecond Laser Processing
,”
Appl. Opt.
,
58
(
33
), pp.
9027
9032
.
37.
Perry
,
M. D.
,
Stuart
,
B. C.
,
Banks
,
P. S.
,
Feit
,
M. D.
,
Yanovsky
,
V.
, and
Rubenchik
,
A. M.
,
1999
, “
Ultrashort-Pulse Laser Machining of Dielectric Materials
,”
J. Appl. Phys.
,
85
(
9
), pp.
6803
6810
.
38.
Xie
,
X.
,
Ou
,
D.
,
Ma
,
D.
,
He
,
J.
, and
Peng
,
H.
,
2022
, “
High-Quality Laser Processing of Fused Silica With Bursts of Ultrafast Pulses
,”
Appl. Phys. A
,
128
(
12
), p.
1062
.
39.
Tan
,
C.
,
Zhao
,
L.
,
Chen
,
M.
,
Cheng
,
J.
,
Zhang
,
Y.
,
Zhang
,
J.
, and
Yan
,
Z.
,
2022
, “
Heat Accumulation Effect During CO2 Laser Processing of Fused Silica Optics
,”
Results Phys.
,
34
, p.
105308
.
40.
Qian
,
Y.
,
Huang
,
H.
,
Wang
,
C.
,
Yu
,
P.
,
Xu
,
J.
, and
Zhang
,
Z.
,
2021
, “
Formation of Leaf-Shaped Microstructure on Zr-Based Metallic Glass via Nanosecond Pulsed Laser Irradiation
,”
J. Manuf. Processes
,
72
, pp.
61
70
.
41.
An
,
H.
,
Qian
,
Y.
,
Zhang
,
L.
,
Zhang
,
Z.
,
Huang
,
H.
, and
Yan
,
J.
,
2023
, “
Fabrication and Functional Characteristics of Micro/Nano Structures on the RB-SiC Surface Through Nanosecond Pulsed Laser Irradiation
,”
Ceram. Int.
,
49
(
22 Part B
), pp.
36276
36288
.
42.
Takayama
,
N.
,
Asaka
,
S.
, and
Yan
,
J.
,
2018
, “
Nanosecond Pulsed Laser Irradiation of Sapphire for Developing Microstructures With Deep V-Shaped Grooves
,”
Precis. Eng.
,
52
, pp.
440
450
.
You do not currently have access to this content.