Abstract

The increasing demand for titanium alloys in aerospace and medical device industries stems from their lightweight and high strength properties. Enhancing machining technologies for titanium alloys is critical for reducing production time and costs. This study investigates the anisotropy in machining of rolled titanium alloy plates with orthogonal cutting tests. The mechanical properties of these plates exhibit anisotropy due to the rolled texture of hexagonal close-packed (HCP) structure. Observations of chip morphologies and cutting forces are conducted with changing cutting direction angles relative to the rolling direction. The result shows that the chip morphology is influenced by the cutting direction angle. When cutting parallel to the rolling direction with an orthogonal cutting tool with 30-deg rake angle, serration free chips are produced, while perpendicular cutting results in serrated chips. The chip thickness, the serration pitch, and the serration length vary with the cutting direction angle. The serration length is associated with an anisotropic deformation index, which characterizes anisotropic behavior in chip formation. Lower index values suppress the formation of undesirable serrated chips. It is expected that the anisotropic deformation index will be applied to the control of serrated chip formation in practical machining processes.

References

1.
Ramesh
,
S.
,
Palanikumar
,
K.
,
Boppana
,
S. B.
, and
Natarajan
,
E.
,
2023
, “
Analysis of Chip Formation and Temperature Measurement in Machining of Titanium Alloy (Ti-6Al-4V)
,”
Exp. Tech.
,
47
(
2
), pp.
517
529
.
2.
Wu
,
D.
,
Liu
,
S.
, and
Wang
,
H.
,
2023
, “
High Surface Integrity Machining of Typical Aviation Difficult-to-Machine Material Blade
,”
Int. J. Adv. Manuf. Technol.
,
129
(
7–8
), pp.
2861
2873
.
3.
Huang
,
P.
,
Zhou
,
J.
, and
Xu
,
L.
,
2023
, “
Online Measurement of the Elastic Recovery Value of Machined Surface in Milling Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
124
(
11–12
), pp.
4297
4305
.
4.
Liu
,
D.
,
Ni
,
C.
,
Wang
,
Y.
, and
Zhu
,
L.
,
2024
, “
Review of Serrated Chip Characteristics and Formation Mechanism From Conventional to Additively Manufactured Titanium Alloys
,”
J. Alloys Compd.
,
970
(
5
), p.
172573
.
5.
Cotterell
,
M.
, and
Byrne
,
G.
,
2008
, “
Characterisation of Chip Formation During Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
2
), pp.
81
85
.
6.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), p.
179
188
.
7.
Yang
,
M.
,
Tang
,
Y.
,
Wu
,
C.
,
Cao
,
S.
,
Huang
,
W.
, and
Zhang
,
X.
,
2024
, “
Characterization of Serrated Chip Formation Based on In Situ Imaging Analysis in Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
146
(
6
), p.
061002
.
8.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
561
568
.
9.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng. A
,
213
(
1–2
), pp.
103
114
.
10.
Khan
,
A. S.
,
Kazmi
,
R.
, and
Farrokh
,
B.
,
2007
, “
Multiaxial and Non-Proportional Loading Responses, Anisotropy and Modeling of Ti-6Al-4V Titanium Alloy Over Wide Ranges of Strain Rates and Temperatures
,”
Int. J. Plast.
,
23
(
6
), pp.
931
950
.
11.
Gao
,
S.
,
He
,
T.
,
Li
,
Q.
,
Sun
,
Y.
,
Sang
,
Y.
,
Wu
,
Y.
, and
Ying
,
L.
,
2022
, “
Anisotropic Behavior and Mechanical Properties of Ti-6Al-4V Alloy in High Temperature Deformation
,”
J. Mater. Sci.
,
57
(
1
), pp.
651
670
.
12.
Tamura
,
S.
, and
Matsumura
,
T.
,
2019
, “
Cutting Force Prediction in Drilling of Rolled Titanium Alloy With Multi-Flute Drills
,”
International Conference of Asian Society for Precision Engineering and Nanotechnology
,
Shimane, Japan
,
Nov. 12–15
.
13.
Ni
,
C.
,
Zhu
,
L.
,
Zheng
,
Z.
,
Zhang
,
J.
,
Yang
,
Y.
,
Yang
,
J.
,
Bai
,
Y.
,
Weng
,
C.
,
Lu
,
W. F.
, and
Wang
,
H.
,
2020
, “
Effect of Material Anisotropy on Ultra-Precision Machining of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
848
(
25
), p.
156457
.
14.
Lizzul
,
L.
,
Sorgato
,
M.
,
Bertolini
,
R.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2021
, “
Anisotropy Effect of Additively Manufactured Ti6Al4 V Titanium Alloy on Surface Quality After Milling
,”
Precis. Eng.
,
67
, pp.
301
310
.
15.
Tamura
,
S.
,
Kaburagi
,
T.
,
Kamakoshi
,
Y.
, and
Matsumura
,
T.
,
2023
, “
Anisotropic Micro Cutting of Rolled Titanium Alloy
,”
J. Adv. Mech. Design Syst. Manuf.
,
17
(
1
), p.
JAMDSM0007
.
16.
Bache
,
M. R.
, and
Evans
,
W. J.
,
2001
, “
Impact of Texture on Mechanical Properties in an Advanced Titanium Alloy
,”
Mater. Sci. Eng. A
,
319–321
, pp.
409
414
.
17.
Chao
,
Q.
,
Hodgson
,
P. D.
, and
Beladi
,
H.
,
2016
, “
Microstructure and Texture Evolution During Symmetric and Asymmetric Rolling of a Martensitic Ti-6Al-4V Alloy
,”
Metall. Mater. Trans. A
,
47
(
1
), pp.
531
545
.
18.
Wyen
,
C. F.
,
Jaeger
,
D.
, and
Wegener
,
K.
,
2013
, “
Influence of Cutting Edge Radius on Surface Integrity and Burr Formation in Milling Titanium
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1–4
), pp.
589
599
.
19.
Lee
,
D. B.
,
Kim
,
M. J.
,
Chen
,
L.
,
Bak
,
S. H.
,
Yaskiv
,
O.
,
Pohrelyuk
,
I.
, and
Fedirko
,
V.
,
2011
, “
Oxidation of Nitride Layers Formed on Ti-6Al-4V Alloys by Gas Nitriding
,”
Met. Mater. Int.
,
17
(
3
), pp.
471
477
.
20.
Chen
,
X.
,
Tang
,
J.
,
Ding
,
H.
, and
Liu
,
A.
,
2021
, “
An Accurate Transient Model for Temperature Fluctuation on Localized Shear Band in Serrated Chip Formation
,”
Int. J. Mech. Sci.
,
204
(
15
), p.
106588
.
21.
Liu
,
H.
,
Wang
,
B.
,
Liu
,
Z.
,
Li
,
L.
,
Ma
,
K.
, and
Cai
,
Y.
,
2024
, “
IN-Situ Test of Full Field Deformation and Chip Formation Mechanism During Machining of Ti2AlNb Intermetallic With Digital Image Correlation Method
,”
CIRP J. Manuf. Sci. Technol.
,
49
, pp.
40
55
.
22.
Li
,
H.
,
Mason
,
D. E.
,
Bieler
,
T. R.
,
Boehlert
,
C. J.
, and
Crimp
,
M. A.
,
2013
, “
Methodology for Estimating the Critical Resolved Shear Stress Ratios of α-Phase Ti Using EBSD-Based Trace Analysis
,”
Acta Mater.
,
61
(
20
), pp.
7555
7567
.
23.
Xia
,
D.
,
Chen
,
X.
,
Huang
,
G.
,
Jiang
,
B.
,
Tang
,
A.
,
Yang
,
H.
,
Gavras
,
S.
,
Huang
,
Y.
,
Hort
,
N.
, and
Pan
,
F.
,
2019
, “
Calculation of Schmid Factor in Mg Alloys: Influence of Stress State
,”
Scr. Mater.
,
171
, pp.
31
35
.
24.
Li
,
A.
,
Zang
,
J.
, and
Zhao
,
J.
,
2020
, “
Effect of Cutting Parameters and Tool Rake Angle on the Chip Formation and Adiabatic Shear Characteristics in Machining Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
107
(
7–8
), pp.
3077
3091
.
You do not currently have access to this content.