Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Rapid investment casting with additively produced molds can offer excellent surface finishes, tight dimensional tolerances, and complex geometries for high-performance metal parts in a rapid fashion. However, there is a long-standing challenge in the investment casting of high-strength aluminum alloy (AA) 7075 due to its hot cracking susceptibility and severe solidification shrinkage. Here, we show the unprecedented rapid investment casting of AA7075 by applying nano-treating technology, whereby a low-volume fraction of nanoparticles is dispersed into the metal to modify its solidification behavior and microstructure. TiC nanoparticles were able to effectively modify alloy's microstructure while suppressing its hot cracking susceptibility during solidification. Primary grain sizes were reduced by 95%, from 1000 µm to 50 µm. Secondary eutectic phases solidified as thin and dispersed fragments with disrupted lamellar morphologies. Nano-treated AA7075 parts produced by rapid investment casting exhibited exceptional tensile strength and ductility in both as-cast and heat-treated conditions. This study highlights the potential of investment casting high-performance alloys that were traditionally considered impossible to fabricate by this method.

References

1.
Celik
,
M.
,
Caydas
,
U.
, and
Akyuz
,
M.
,
2022
, “
The Influence of Roller Burnishing Process Parameters on Surface Quality and Fatigue Life of AA 7075-T6 Alloy
,”
Materialwiss. Werkstofftech.
,
53
(
5
), pp.
608
616
.
2.
Sha
,
G.
, and
Cerezo
,
A.
,
2004
, “
Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050)
,”
Acta Mater.
,
52
(
15
), pp.
4503
4516
.
3.
Buha
,
J.
,
Lumley
,
R. N.
, and
Crosky
,
A. G.
,
2008
, “
Secondary Ageing in an Aluminium Alloy 7050
,”
Mater. Sci. Eng. A
,
492
(
1–2
), pp.
1
10
.
4.
Altıparmak
,
S. C.
,
Yardley
,
V. A.
,
Shi
,
Z.
, and
Lin
,
J.
,
2021
, “
Challenges in Additive Manufacturing of High-Strength Aluminium Alloys and Current Developments in Hybrid Additive Manufacturing
,”
Int. J. Lightweight Mater. Manuf.
,
4
(
2
), pp.
246
261
.
5.
Ebina
,
K.
,
Nishimoto
,
M.
,
Muto
,
I.
, and
Sugawara
,
Y.
,
2023
, “
Enhancing Pitting Corrosion Resistance of AA7075 Through Cathodic Deposition of Mn-Accumulated Film on Intermetallic Particles Containing Copper
,”
Corros. Sci.
,
220
, p.
111299
.
6.
Xiong
,
Y.
,
Robson
,
J. D.
,
Yao
,
Y.
,
Zhong
,
X.
,
Guarracino
,
F.
,
Bendo
,
A.
,
Jin
,
Z.
,
Hashimoto
,
T.
,
Liu
,
X.
, and
Curioni
,
M.
,
2023
, “
Effects of Heat Treatments on the Microstructure and Localized Corrosion Behaviors of AA7075 Aluminum Alloy
,”
Corros. Sci.
,
221
, p.
111361
.
7.
Richard
,
C. T.
, and
Kwok
,
T.-H.
,
2019
, “
Rapid Investment Casting: Design and Manufacturing Technologies
,”
Volume 1: 39th Computers and Information in Engineering Conference, American Society of Mechanical Engineers
,
Anaheim, CA
,
Aug. 18–21
.
8.
Lee
,
M. H.
,
Kim
,
J. J.
,
Kim
,
K. H.
,
Kim
,
N. J.
,
Lee
,
S.
, and
Lee
,
E. W.
,
2003
, “
Effects of HIPping on High-Cycle Fatigue Properties of Investment Cast A356 Aluminum Alloys
,”
Mater. Sci. Eng. A
,
340
(
1
), pp.
123
129
.
9.
Dezecot
,
S.
, and
Brochu
,
M.
,
2015
, “
Microstructural Characterization and High Cycle Fatigue Behavior of Investment Cast A357 Aluminum Alloy
,”
Int. J. Fatigue
,
77
, pp.
154
159
.
10.
Pattnaik
,
S.
,
Karunakar
,
D. B.
, and
Jha
,
P. K.
,
2012
, “
Developments in Investment Casting Process—A Review
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2332
2348
.
11.
Dotchev
,
K.
, and
Soe
,
S.
,
2006
, “
Rapid Manufacturing of Patterns for Investment Casting: Improvement of Quality and Success Rate
,”
Rapid Prototyp. J.
,
12
(
3
), pp.
156
164
.
12.
Kaiser
,
R.
,
Williamson
,
K.
,
O’Brien
,
C.
,
Ramirez-Garcia
,
S.
, and
Browne
,
D. J.
,
2013
, “
The Influence of Cooling Conditions on Grain Size, Secondary Phase Precipitates and Mechanical Properties of Biomedical Alloy Specimens Produced by Investment Casting
,”
J. Mech. Behav. Biomed. Mater.
,
24
, pp.
53
63
.
13.
Yuan
,
J.
,
Pan
,
S.
,
Zheng
,
T.
, and
Li
,
X.
,
2021
, “
Nanoparticle Promoted Solution Treatment by Reducing Segregation in AA7034
,”
Mater. Sci. Eng. A
,
822
, p.
141691
.
14.
Hamilton
,
R. W.
,
See
,
D.
,
Butler
,
S.
, and
Lee
,
P. D.
,
2003
, “
Multiscale Modeling for the Prediction of Casting Defects in Investment Cast Aluminum Alloys
,”
Mater. Sci. Eng. A
,
343
(
1–2
), pp.
290
300
.
15.
Siaminwe
,
L.
, and
Clegg
,
A. J.
,
1999
, “
Effect of Processing Variables on Structure and Tensile Properties of Investment Cast Al–Si–Mg Casting Alloy
,”
Mater. Sci. Technol.
,
15
(
7
), pp.
812
820
.
16.
Previtali
,
B.
,
Pocci
,
D.
, and
Taccardo
,
C.
,
2008
, “
Application of Traditional Investment Casting Process to Aluminium Matrix Composites
,”
Composites Part A
,
39
(
10
), pp.
1606
1617
.
17.
Egizabal
,
P.
,
García De Cortazar
,
M.
,
Douin
,
J.
,
Torregaray
,
A.
,
Lahaye
,
M.
,
Vincent
,
C.
, and
Silvain
,
J.-F.
,
2010
, “
Microstructural Analysis of the Reinforced Al-Cu5mgti/Tib2 5 Wt % Alloy for Investment Casting Applications
,”
Adv. Eng. Mater.
,
12
(
6
), pp.
504
508
.
18.
Yuan
,
J.
,
Zuo
,
M.
,
Sokoluk
,
M.
,
Yao
,
G.
,
Pan
,
S.
, and
Li
,
X.
,
2020
, “Nanotreating High-Zinc Al–Zn–Mg–Cu Alloy by TiC Nanoparticles,”
Light Metals 2020
,
A.
Tomsett
, ed.,
Springer International Publishing
,
Cham
, pp.
318
323
.
19.
Sokoluk
,
M.
,
Cao
,
C.
,
Pan
,
S.
, and
Li
,
X.
,
2019
, “
Nanoparticle-Enabled Phase Control for Arc Welding of Unweldable Aluminum Alloy 7075
,”
Nat. Commun.
,
10
(
1
), p.
98
.
20.
Sokoluk
,
M.
,
Yuan
,
J.
,
Pan
,
S.
, and
Li
,
X.
,
2021
, “
Nanoparticles Enabled Mechanism for Hot Cracking Elimination in Aluminum Alloys
,”
Metall. Mater. Trans. A
,
52
(
7
), pp.
3083
3096
.
21.
Chi
,
Y.
,
Pan
,
S.
,
Liese
,
M.
,
Liu
,
J.
,
Murali
,
N.
,
Soemardy
,
E.
, and
Li
,
X.
,
2023
, “
Wire-Arc Directed Energy Deposition of Aluminum Alloy 7075 With Dispersed Nanoparticles
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031010
.
22.
Chi
,
Y.
,
Murali
,
N.
,
Liu
,
J.
,
Liese
,
M.
, and
Li
,
X.
,
2022
, “
Wire Arc Additive Manufacturing (WAAM) of Nanotreated Aluminum Alloy 6061
,”
Rapid Prototyp. J.
,
29
(
7
), pp.
1341
1349
.
23.
Chi
,
Y.
,
Murali
,
N.
,
Zheng
,
T.
,
Liu
,
J.
, and
Li
,
X.
,
2022
, “
Wire-Arc Additive Manufacturing of Nano-Treated Aluminum Alloy 2024
,”
3D Print. Addit. Manuf.
,
11
(
3
), pp.
e529
e536
.
24.
Zheng
,
T.
,
Pan
,
S.
,
Murali
,
N.
,
Li
,
B.
, and
Li
,
X.
,
2022
, “
Selective Laser Melting of Novel 7075 Aluminum Powders With Internally Dispersed TiC Nanoparticles
,”
Mater. Lett.
,
319
, p.
132268
.
25.
Chen
,
G.-C.
, and
Li
,
X.
,
2023
, “
Effect of TiC Nano-Treating on the Fluidity and Solidification Behavior of Aluminum Alloy 6063
,”
J. Mater. Process. Technol.
,
324
, pp.
118
241
.
26.
Chen
,
G.-C.
, and
Li
,
X.
,
2023
, “
Nanoparticle-Enhanced Castability of Aluminum Alloy 2024: Fluidity, Hot Cracking, and Surface Quality
,”
Metall. Mater. Trans. A
,
55
, pp.
761
773
.
27.
ASM Handbook Committee
,
1991
, “Heat Treating of Aluminum Alloys,”
ASM Handbook
,
ASM International
,
Materials Park, OH
, pp.
841
879
.
28.
Davis
,
J. R.
,
1998
,
Metals Handbook Desk Edition
,
American Society of Mechanical Engineers
,
Materials Park, OH
.
29.
Zuo
,
M.
,
Sokoluk
,
M.
,
Cao
,
C.
,
Yuan
,
J.
,
Zheng
,
S.
, and
Li
,
X.
,
2019
, “
Microstructure Control and Performance Evolution of Aluminum Alloy 7075 by Nano-Treating
,”
Sci. Rep.
,
9
(
1
), p.
10671
.
30.
Chen
,
L.-Y.
,
Xu
,
J.-Q.
,
Choi
,
H.
,
Pozuelo
,
M.
,
Ma
,
X.
,
Bhowmick
,
S.
,
Yang
,
J.-M.
,
Mathaudhu
,
S.
, and
Li
,
X.-C.
,
2015
, “
Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles
,”
Nature
,
528
(
7583
), pp.
539
543
.
31.
Pan
,
S.
,
Sokoluk
,
M.
,
Cao
,
C.
,
Guan
,
Z.
, and
Li
,
X.
,
2019
, “
Facile Fabrication and Enhanced Properties of Cu-40 Wt% Zn/WC Nanocomposite
,”
J. Alloys Compd.
,
784
, pp.
237
243
.
32.
Sato
,
Y. S.
,
Urata
,
M.
,
Kokawa
,
H.
, and
Ikeda
,
K.
,
2003
, “
Hall–Petch Relationship in Friction Stir Welds of Equal Channel Angular-Pressed Aluminium Alloys
,”
Mater. Sci. Eng. A
,
354
(
1–2
), pp.
298
305
.
33.
Yang
,
H.
,
Jiang
,
L.
,
Balog
,
M.
,
Krizik
,
P.
, and
Schoenung
,
J. M.
,
2017
, “
Reinforcement Size Dependence of Load Bearing Capacity in Ultrafine-Grained Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
48
(
9
), pp.
4385
4392
.
34.
Moon
,
J.
,
Kim
,
S.
,
Jang
,
J.
,
Lee
,
J.
, and
Lee
,
C.
,
2008
, “
Orowan Strengthening Effect on the Nanoindentation Hardness of the Ferrite Matrix in Microalloyed Steels
,”
Mater. Sci. Eng. A
,
487
(
1–2
), pp.
552
557
.
You do not currently have access to this content.