Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Residual stress (RS) significantly impacts the mechanical performance of components. Measurement of RS often provides incomplete data in terms of components of stress and spatial density. Employing such fields in finite element simulations results in significant modification of the field to achieve equilibrium and compatibility among strains. To overcome this, an iterative stress reconstruction algorithm (ISRA) is developed to estimate 3D RS fields that satisfy equilibrium, are stress component-wise complete, and represent the characterized data sampled. An Al 7075-T651 plate and an additively manufactured (AM) A36 steel wall are considered for RS reconstruction using measurement data from the literature. A maximum variation of ∼2.5 MPa in the Al plate, and ∼10 MPa in the steel wall are observed between the reconstructed and measured stresses. Furthermore, unknown stress components emerge and reach significant magnitudes (upto ∼2.3 MPa in the Al plate and ∼45 MPa in the AM wall) during ISRA. Indeed, it is found that minor errors in measurement or data processing are eliminated through the physical requirements during ISRA. Employing a reconstructed RS field is hence not just more accurate given its compatibility, but it additionally corrects for minor errors in measurement. Furthermore, it is found that spatially dense measurement data result in convergence with fewer iterations. Finally, although ISRA yields a nonunique solution dependent on boundary conditions, measurement errors, fitting errors, and mesh density, it accommodates for uncertainties and inaccuracies in measurement, as opposed to failing to reach a physically realistic converged solution.

References

1.
Li
,
Y.
,
Li
,
Y.-N.
,
Li
,
X.-W.
,
Zhu
,
K.
,
Zhang
,
Y.-A.
,
Li
,
Z.-H.
,
Yan
,
H.-W.
, and
Wen
,
K.
,
2023
, “
Influence of Material Removal Strategy on Machining Deformation of Aluminum Plates With Asymmetric Residual Stresses
,”
Materials
,
16
(
5
), p.
2033
.
2.
Gullipalli
,
C.
,
Thawari
,
N.
,
Burad
,
P.
, and
Gupta
,
T.
,
2023
, “
Residual Stresses and Distortions in Additive Manufactured Inconel 718
,”
Mater. Manuf. Processes.
,
38
(
12
), pp.
1
12
.
3.
Farahani
,
M.
, and
Sattari-Far
,
I.
,
2011
, “
Effects of Residual Stresses on Crack-Tip Constraints
,”
Sci. Iranica
,
18
(
6
), pp.
1267
1276
.
4.
Takakuwa
,
O.
, and
Sattari-Soyama
,
H.
,
2014
, “
Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel
,”
Adv. Chem. Eng. Sci.
,
5
(
1
), p.
62
.
5.
Cruz
,
V.
,
Chao
,
Q.
,
Birbilis
,
N.
,
Fabijanic
,
D.
,
Hodgson
,
P.
, and
Thomas
,
S.
,
2020
, “
Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316l Manufactured by Selective Laser Melting
,”
Corros. Sci.
,
164
, p.
108314
.
6.
Webster
,
G.
, and
Ezeilo
,
A.
,
2001
, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue.
,
23
(
Supplement 1
), pp.
375
383
.
7.
Kudryavtsev
,
Y. F.
,
2008
,
Residual Stress
,
Springer US
,
Boston, MA
, pp.
371
388
.
8.
Jiang
,
X.
,
Wei
,
Y.
,
Zhou
,
J.
,
Zhan
,
K.
,
Ding
,
Z.
, and
Liang
,
S. Y.
,
2023
, “
Residual Stress Generation and Evaluation in Milling: A Review
,”
Int. J. Adv. Manuf. Technol.
,
126
(
9
), pp.
1
30
.
9.
Ding
,
Z.
,
Sun
,
G.
,
Guo
,
M.
,
Jiang
,
X.
,
Li
,
B.
, and
Liang
,
S. Y.
,
2020
, “
Effect of Phase Transition on Micro-Grinding-Induced Residual Stress
,”
J. Mater. Process. Technol.
,
281
, p.
116647
.
10.
Wang
,
L.
,
Jiang
,
X.
,
Zhu
,
Y.
,
Ding
,
Z.
,
Zhu
,
X.
,
Sun
,
J.
, and
Yan
,
B.
,
2018
, “
Investigation of Performance and Residual Stress Generation of AlSi10Mg Processed by Selective Laser Melting
,”
Adv. Mater. Sci. Eng.
,
2018
(
1
), pp.
1
12
.
11.
Maqbool
,
F.
,
Maaß
,
F.
,
Buhl
,
J.
,
Hahn
,
M.
,
Hajavifard
,
R.
,
Walther
,
F.
,
Tekkaya
,
A. E.
, and
Bambach
,
M.
,
2021
, “
Targeted Residual Stress Generation in Single and Two Point Incremental Sheet Forming (ISF)
,”
Arch. Appl. Mech.
,
91
(
8
), pp.
3465
3487
.
12.
Johnson
,
E. M.
,
Watkins
,
T. R.
,
Schmidlin
,
J. E.
, and
Dutler
,
S.
,
2012
, “
A Benchmark Study on Casting Residual Stress
,”
Metall. Mater. Trans. A.
,
43
(
5
), pp.
1487
1496
.
13.
Robinson
,
J.
,
Hossain
,
S.
,
Truman
,
C.
,
Paradowska
,
A.
,
Hughes
,
D.
,
Wimpory
,
R.
, and
Fox
,
M.
,
2010
, “
Residual Stress in 7449 Aluminium Alloy Forgings
,”
Mater. Sci. Eng. A.
,
527
(
10–11
), pp.
2603
2612
.
14.
Prime
,
M. B.
, and
Hill
,
M. R.
,
2002
, “
Residual Stress, Stress Relief, and Inhomogeneity in Aluminum Plate
,”
Scr. Mater.
,
46
(
1
), pp.
77
82
.
15.
Megahed
,
M.
,
Mindt
,
H.-W.
,
N’Dri
,
N.
,
Duan
,
H.
, and
Desmaison
,
O.
,
2016
, “
Metal Additive-Manufacturing Process and Residual Stress Modeling
,”
Integr. Mater. Manuf. Innovat.
,
5
(
1
), pp.
61
93
.
16.
Dreier
,
S.
, and
Denkena
,
B.
,
2014
, “
Determination of Residual Stresses in Plate Material by Layer Removal With Machine-Integrated Measurement
,”
Procedia Cirp
,
24
, pp.
103
107
.
17.
Schajer
,
G. S.
,
2010
, “
Advances in Hole-Drilling Residual Stress Measurements
,”
Exp. Mech.
,
50
(
2
), pp.
159
168
.
18.
Lunt
,
A. J.
,
Baimpas
,
N.
,
Salvati
,
E.
,
Dolbnya
,
I. P.
,
Sui
,
T.
,
Ying
,
S.
,
Zhang
,
H.
,
Kleppe
,
A. K.
,
Dluhoš
,
J.
, and
Korsunsky
,
A. M.
,
2015
, “
A State-of-the-Art Review of Micron-Scale Spatially Resolved Residual Stress Analysis by FIB-DIC Ring-Core Milling and Other Techniques
,”
J. Strain Anal. Eng. Des.
,
50
(
7
), pp.
426
444
.
19.
Hill
,
M. R.
, and
DeWald
,
A. T.
,
2013
, “The Slitting Method,”
Practical Residual Stress Measurement Methods
,
John Wiley & Sons, Ltd
,
New York
, pp.
89
108
.
20.
Greving
,
D.
,
Rybicki
,
E.
, and
Shadley
,
J.
,
1994
, “
Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method
,”
J. Thermal Spray Technol.
,
3
(
4
), pp.
379
388
.
21.
Prime
,
M. B.
, and
DeWald
,
A. T.
,
2013
, “The Contour Method,”
Practical Residual Stress Measurement Methods
,
John Wiley & Sons, Ltd
,
New York
, pp.
109
138
.
22.
Lu
,
J.
, and
Retraint
,
D.
,
1998
, “
A Review of Recent Developments and Applications in the Field of X-Ray Diffraction for Residual Stress Studies
,”
J. Strain Anal. Eng. Des.
,
33
(
2
), pp.
127
136
.
23.
Hutchings
,
M. T.
,
Withers
,
P. J.
,
Holden
,
T. M.
, and
Lorentzen
,
T.
,
2005
,
Introduction to the Characterization of Residual Stress by Neutron Diffraction
,
CRC Press
.
24.
Umapathi
,
A.
, and
Swaroop
,
S.
,
2019
, “
Measurement of Residual Stresses in Titanium Alloys Using Synchrotron Radiation
,”
Measurement
,
140
, pp.
518
525
.
25.
Jiang
,
G.
,
Haiyang
,
F.
,
Bo
,
P.
, and
Renke
,
K.
,
2021
, “
Recent Progress of Residual Stress Measurement Methods: A Review
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
54
78
.
26.
WANG
,
Z.-j.
,
Chen
,
W.-Y.
,
Zhang
,
Y.-D.
,
Chen
,
Z.-T.
, and
Qiang
,
L.
,
2005
, “
Study on the Machining Distortion of Thin-Walled Part Caused by Redistribution of Residual Stress
,”
Chin. J. Aeronaut.
,
18
(
2
), pp.
175
179
.
27.
Akhtar
,
W.
,
Lazoglu
,
I.
, and
Liang
,
S. Y.
,
2022
, “
Prediction and Control of Residual Stress-Based Distortions in the Machining of Aerospace Parts: A Review
,”
J. Manuf. Process.
,
76
, pp.
106
122
.
28.
Li
,
J.-G.
, and
Wang
,
S.-Q.
,
2017
, “
Distortion Caused by Residual Stresses in Machining Aeronautical Aluminum Alloy Parts: Recent Advances
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1
), pp.
997
1012
.
29.
Zhang
,
Z.
,
Li
,
L.
,
Yang
,
Y.
,
He
,
N.
, and
Zhao
,
W.
,
2014
, “
Machining Distortion Minimization for the Manufacturing of Aeronautical Structure
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9
), pp.
1765
1773
.
30.
Masoudi
,
S.
,
Amini
,
S.
,
Saeidi
,
E.
, and
Eslami-Chalander
,
H.
,
2015
, “
Effect of Machining-Induced Residual Stress on the Distortion of Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
76
(
1
), pp.
597
608
.
31.
Heigel
,
J. C.
,
Phan
,
T. Q.
,
Fox
,
J. C.
, and
Gnaupel-Herold
,
T. H.
,
2018
, “
Experimental Investigation of Residual Stress and Its Impact on Machining in Hybrid Additive/Subtractive Manufacturing
,”
Procedia Manuf.
,
26
, pp.
929
940
.
32.
Li
,
R.
,
Wang
,
G.
,
Zhao
,
X.
,
Dai
,
F.
,
Huang
,
C.
,
Zhang
,
M.
,
Chen
,
X.
,
Song
,
H.
, and
Zhang
,
H.
,
2021
, “
Effect of Path Strategy on Residual Stress and Distortion in Laser and Cold Metal Transfer Hybrid Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102203
.
33.
Mathews
,
R.
,
Nagaraja
,
K. M.
,
Zhang
,
R.
,
Sunny
,
S.
,
Yu
,
H.
,
Marais
,
D.
,
Venter
,
A.
,
Li
,
W.
,
Lu
,
H.
, and
Malik
,
A.
,
2023
, “
Temporally Continuous Thermofluidic–Thermomechanical Modeling Framework for Metal Additive Manufacturing
,”
Int. J. Mech. Sci.
,
254
, p.
108424
.
34.
Fergani
,
O.
,
Berto
,
F.
,
Welo
,
T.
, and
Liang
,
S.
,
2017
, “
Analytical Modelling of Residual Stress in Additive Manufacturing
,”
Fatigue. Fract. Eng. Mater. Struct.
,
40
(
6
), pp.
971
978
.
35.
Ning
,
J.
,
Praniewicz
,
M.
,
Wang
,
W.
,
Dobbs
,
J. R.
, and
Liang
,
S. Y.
,
2020
, “
Analytical Modeling of Part Distortion in Metal Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1
), pp.
49
57
.
36.
Khan
,
K.
,
Mohan
,
L. S.
,
De
,
A.
, and
DebRoy
,
T.
,
2022
, “
Rapid Calculation of Part Scale Residual Stresses in Powder Bed Additive Manufacturing
,”
Sci. Technol. Welding Join.
,
28
(
2
), pp.
1
9
.
37.
Li
,
C.
,
Liu
,
Z.
,
Fang
,
X.
, and
Guo
,
Y.
,
2018
, “
Residual Stress in Metal Additive Manufacturing
,”
Procedia Cirp
,
71
, pp.
348
353
.
38.
Madireddy
,
G.
,
Li
,
C.
,
Liu
,
J.
, and
Sealy
,
M. P.
,
2019
, “
Modeling Thermal and Mechanical Cancellation of Residual Stress From Hybrid Additive Manufacturing by Laser Peening
,”
Nanotechnol. Precis. Eng.
,
2
(
2
), pp.
49
60
.
39.
D’Alvise
,
L.
,
Chantzis
,
D.
,
Schoinochoritis
,
B.
, and
Salonitis
,
K.
,
2015
, “
Modelling of Part Distortion Due to Residual Stresses Relaxation: An Aeronautical Case Study
,”
Procedia Cirp
,
31
, pp.
447
452
.
40.
Casuso
,
M.
,
Polvorosa
,
R.
,
Veiga
,
F.
,
Suárez
,
A.
, and
Lamikiz
,
A.
,
2020
, “
Residual Stress and Distortion Modeling on Aeronautical Aluminum Alloy Parts for Machining Sequence Optimization
,”
Int. J. Adv. Manuf. Technol.
,
110
(
5
), pp.
1219
1232
.
41.
Weber
,
D.
,
Kirsch
,
B.
,
Chighizola
,
C. R.
,
Jonsson
,
J. E.
,
D’Elia
,
C. R.
,
Linke
,
B. S.
,
Hill
,
M. R.
, and
Aurich
,
J. C.
,
2021
, “
Finite Element Simulation Combination to Predict the Distortion of Thin Walled Milled Aluminum Workpieces as a Result of Machining Induced Residual Stresses
,”
2nd International Conference of the DFG International Research Training Group 2057–Physical Modeling for Virtual Manufacturing (iPMVM 2020), Schloss Dagstuhl-Leibniz-Zentrum für Informatik
,
Wadern, Germany
,
Nov. 16–18
.
42.
Bilkhu
,
R.
, and
Ayvar-Soberanis
,
S.
,
2021
, “
Simulation of the Coupling Effect of Bulk and Induced Residual Stresses on Machining Distortion
,”
Procedia CIRP
,
101
, pp.
5
8
.
43.
Smith
,
D.
,
Farrahi
,
G.
,
Zhu
,
W.
, and
McMahon
,
C.
,
2001
, “
Obtaining Multiaxial Residual Stress Distributions From Limited Measurements
,”
Mater. Sci. Eng. A.
,
303
(
1–2
), pp.
281
291
.
44.
Qian
,
X.
,
Yao
,
Z.
,
Cao
,
Y.
, and
Lu
,
J.
,
2004
, “
An Inverse Approach for Constructing Residual Stress Using Bem
,”
Eng. Anal. Boundary Elements
,
28
(
3
), pp.
205
211
.
45.
Korsunsky
,
A. M.
,
Regino
,
G. M.
, and
Nowell
,
D.
,
2005
, “
Reconstruction of Residual Stress in a Welded Plate Using the Variational Eigenstrain Approach
,”
arXiv preprint cond-mat/0510022
. https://arxiv.org/abs/cond-mat/0510022
46.
Korsunsky
,
A.
,
2009
, “
Eigenstrain Analysis of Residual Strains and Stresses
,”
J. Strain Anal. Eng. Des.
,
44
(
1
), pp.
29
43
.
47.
Jun
,
T.-S.
, and
Korsunsky
,
A. M.
,
2010
, “
Evaluation of Residual Stresses and Strains Using the Eigenstrain Reconstruction Method
,”
Int. J. Solids. Struct.
,
47
(
13
), pp.
1678
1686
.
48.
Song
,
X.
, and
Korsunsky
,
A. M.
,
2011
, “
Fully Two-Dimensional Discrete Inverse Eigenstrain Analysis of Residual Stresses in a Railway Rail Head
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031019
.
49.
Faghidian
,
S. A.
,
2014
, “
A Smoothed Inverse Eigenstrain Method for Reconstruction of the Regularized Residual Fields
,”
Int. J. Solids. Struct.
,
51
(
25–26
), pp.
4427
4434
.
50.
Ali Faghidian
,
S.
,
2017
, “
Analytical Approach for Inverse Reconstruction of Eigenstrains and Residual Stresses in Autofrettaged Spherical Pressure Vessels
,”
ASME J. Pressure. Vessel. Technol.
,
139
(
4
), p.
041202
.
51.
Salvati
,
E.
,
Lunt
,
A.
,
Ying
,
S.
,
Sui
,
T.
,
Zhang
,
H.
,
Heason
,
C.
,
Baxter
,
G.
, and
Korsunsky
,
A.
,
2017
, “
Eigenstrain Reconstruction of Residual Strains in an Additively Manufactured and Shot Peened Nickel Superalloy Compressor Blade
,”
Comput. Methods. Appl. Mech. Eng.
,
320
, pp.
335
351
.
52.
Salvati
,
E.
, and
Korsunsky
,
A.
,
2018
, “
A Simplified Fem Eigenstrain Residual Stress Reconstruction for Surface Treatments in Arbitrary 3d Geometries
,”
Int. J. Mech. Sci.
,
138
, pp.
457
466
.
53.
Avril
,
S.
,
Pierron
,
F.
,
Pannier
,
Y.
, and
Rotinat
,
R.
,
2008
, “
Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-Plastic Problems Using Surface Measurements of Deformation Fields
,”
Exp. Mech.
,
48
(
4
), pp.
403
419
.
54.
Farrahi
,
G.
,
Faghidian
,
S.
, and
Smith
,
D.
,
2009
, “
Reconstruction of Residual Stresses in Autofrettaged Thick-Walled Tubes From Limited Measurements
,”
Int. J. Pressure Vessels Piping
,
86
(
11
), pp.
777
784
.
55.
Farrahi
,
G. H.
,
Faghidian
,
S. A.
, and
Smith
,
D. J.
,
2010
, “
An Inverse Method for Reconstruction of the Residual Stress Field in Welded Plates
,”
ASME J. Pressure. Vessel. Technol.
,
132
(
6
), p.
061205
.
56.
Nedin
,
R.
, and
Vatulyan
,
A.
,
2014
, “
Concerning One Approach to the Reconstruction of Heterogeneous Residual Stress in Plate
,”
ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech.
,
94
(
1–2
), pp.
142
149
.
57.
Morin
,
L.
,
Braham
,
C.
,
Tajdary
,
P.
,
Seddik
,
R.
, and
Gonzalez
,
G.
,
2021
, “
Reconstruction of Heterogeneous Surface Residual-Stresses in Metallic Materials From X-Ray Diffraction Measurements
,”
Mech. Mater.
,
158
, p.
103882
.
58.
Do
,
S.
,
Serasli
,
K.
, and
Smith
,
D.
,
2013
, “
Combined Measurement and Finite Element Analysis to Map Residual Stresses in Welded Components
,”
Proceedings of the ASME 2013 Pressure Vessels and Piping Conference. Volume 6B: Materials and Fabrication.
,
Paris, France
,
July 14–18
.
59.
Coules
,
H. E.
,
Smith
,
D. J.
,
Venkata
,
K. A.
, and
Truman
,
C. E.
,
2014
, “
A Method for Reconstruction of Residual Stress Fields From Measurements Made in an Incompatible Region
,”
Int. J. Solids. Struct.
,
51
(
10
), pp.
1980
1990
.
60.
Chukkan
,
J. R.
,
Wu
,
G.
,
Fitzpatrick
,
M. E.
,
Jones
,
S.
, and
Kelleher
,
J.
,
2019
, “
An Iterative Technique for the Reconstruction of Residual Stress Fields in a Butt-Welded Plate From Experimental Measurement, and Comparison With Welding Process Simulation
,”
Int. J. Mech. Sci.
,
160
, pp.
421
428
.
61.
Nycz
,
A.
,
Lee
,
Y.
,
Noakes
,
M.
,
Ankit
,
D.
,
Masuo
,
C.
,
Simunovic
,
S.
,
Bunn
,
J.
,
Love
,
L.
,
Oancea
,
V.
,
Payzant
,
A.
, and
Fancher
,
C. M.
,
2021
, “
Effective Residual Stress Prediction Validated With Neutron Diffraction Method for Metal Large-Scale Additive Manufacturing
,”
Mater. Des.
,
205
, p.
109751
.
62.
Committee
,
A. H.
,
1990
,
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
,
ASM International
.
63.
Goldak
,
J.
,
1994
, “
A Predictive Method for Computing Distortion Due to Welding in Ship Structures
,”
Edison Welding Institute
,
Columbus, OH
.
64.
Yadav
,
S.
,
Singhal
,
S.
,
Jasra
,
Y.
, and
Saxena
,
R. K.
,
2020
, “
Determination of Johnson-Cook Material Model for Weldment of Mild Steel
,”
Mater. Today: Proc.
,
28
, pp.
1801
1808
.
You do not currently have access to this content.