Abstract

This work presents a fast additive manufacturing (AM) protocol for fabricating multi-network hydrogels. A gas-permeable PDMS (polydimethylsiloxane) film creates a polymerization-inhibition zone, enabling continuous stereolithography (SLA) 3D printing of hydrogels. The fabricated multi-bonding network integrates rigid covalent bonding and tough ionic bonding, allowing effective tuning of elastic modulus and strength for various loading conditions. The 3D-printed triply periodic minimal structures (TPMS) hydrogels exhibit high compressibility with up to 80% recoverable strain. Additionally, dried TPMS hydrogels display novel energy/impact absorption properties. By comparing uniform and gradient TPMS hydrogels, we analyze their energy/impact absorption capability of the 3D-printed specimens. We use finite element analysis (FEA) simulation studies to reveal the anisotropy and quasi-isotropy behavior of the TPMS structures, providing insights for designing and controlling TPMS structures for energy absorption. Our findings suggest that gradient TPMS hydrogels are preferable energy absorbers with potential applications in impact resistance and absorption.

References

1.
Dara
,
A.
,
Bahubalendruni
,
M. A. R. R.
,
Mertens
,
A. J.
, and
Balamurali
,
G.
,
2022
, “
Numerical and Experimental Investigations of Novel Nature Inspired Open Lattice Cellular Structures for Enhanced Stiffness and Specific Energy Absorption
,”
Mater. Today Commun.
,
31
, p.
103286
.
2.
Zhang
,
X.-C.
,
An
,
L.-Q.
,
Ding
,
H.-M.
,
Zhu
,
X.-Y.
, and
El-Rich
,
M.
,
2015
, “
The Influence of Cell Micro-Structure on the In-Plane Dynamic Crushing of Honeycombs With Negative Poisson’s Ratio
,”
J. Sandwich Struct. Mater.
,
17
(
1
), pp.
26
55
.
3.
Xiang
,
X. M.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Energy Absorption of Origami Inspired Structures and Materials
,”
Thin Walled Struct.
,
157
, p.
107130
.
4.
Tarlochan
,
F.
,
2021
, “
Sandwich Structures for Energy Absorption Applications: A Review
,”
Materials
,
14
(
16
), p.
4731
.
5.
Femmer
,
T.
,
Kuehne
,
A. J.
, and
Wessling
,
M.
,
2015
, “
Estimation of the Structure Dependent Performance of 3-D Rapid Prototyped Membranes
,”
Chem. Eng. J.
,
273
, pp.
438
445
.
6.
Hussain
,
I.
,
Al-Ketan
,
O.
,
Renda
,
F.
,
Malvezzi
,
M.
,
Prattichizzo
,
D.
,
Seneviratne
,
L.
,
Abu Al-Rub
,
R. K.
, and
Gan
,
D.
,
2020
, “
Design and Prototyping Soft–Rigid Tendon-Driven Modular Grippers Using Interpenetrating Phase Composites Materials
,”
Int. J. Rob. Res.
,
39
(
14
), pp.
1635
1646
.
7.
Guo
,
Z.
, and
Zhou
,
C.
,
2021
, “
Recent Advances in Ink-Based Additive Manufacturing for Porous Structures
,”
Addit. Manuf.
,
48
, p.
102405
.
8.
Feng
,
J.
,
Fu
,
J.
,
Yao
,
X.
, and
He
,
Y.
,
2022
, “
Triply Periodic Minimal Surface (TPMS) Porous Structures: From Multi-Scale Design, Precise Additive Manufacturing to Multidisciplinary Applications
,”
Int. J. Extreme Manuf.
,
4
(
2
), p.
022001
.
9.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2018
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
, pp.
505
515
.
10.
Soro
,
N.
,
Saintier
,
N.
,
Merzeau
,
J.
,
Veidt
,
M.
, and
Dargusch
,
M. S.
,
2021
, “
Quasi-Static and Fatigue Properties of Graded Ti–6Al–4 V Lattices Produced by Laser Powder Bed Fusion (LPBF)
,”
Addit. Manuf.
,
37
, p.
101653
.
11.
Li
,
D.
,
Liao
,
W.
,
Dai
,
N.
, and
Xie
,
Y. M.
,
2019
, “
Comparison of Mechanical Properties and Energy Absorption of Sheet-Based and Strut-Based Gyroid Cellular Structures With Graded Densities
,”
Materials
,
12
(
13
), p.
2183
.
12.
Nele
,
V.
,
Wojciechowski
,
J. P.
,
Armstrong
,
J. P.
, and
Stevens
,
M. M.
,
2020
, “
Tailoring Gelation Mechanisms for Advanced Hydrogel Applications
,”
Adv. Funct. Mater.
,
30
(
42
), p.
2002759
.
13.
Liu
,
R.
,
Liang
,
S.
,
Tang
,
X.-Z.
,
Yan
,
D.
,
Li
,
X.
, and
Yu
,
Z.-Z.
,
2012
, “
Tough and Highly Stretchable Graphene Oxide/Polyacrylamide Nanocomposite Hydrogels
,”
J. Mater. Chem.
,
22
(
28
), pp.
14160
14167
.
14.
Sun
,
J.-Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.
15.
Yue
,
K.
,
Trujillo-de Santiago
,
G.
,
Alvarez
,
M. M.
,
Tamayol
,
A.
,
Annabi
,
N.
, and
Khademhosseini
,
A.
,
2015
, “
Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels
,”
Biomaterials
,
73
, pp.
254
271
.
16.
Kirchmajer
,
D. M.
,
Gorkin III
,
R.
, and
in het Panhuis
,
M.
,
2015
, “
An Overview of the Suitability of Hydrogel-Forming Polymers for Extrusion-Based 3D-Printing
,”
J. Mater. Chem. B
,
3
(
20
), pp.
4105
4117
.
17.
Hong
,
S.
,
Sycks
,
D.
,
Chan
,
H. F.
,
Lin
,
S.
,
Lopez
,
G. P.
,
Guilak
,
F.
,
Leong
,
K. W.
, and
Zhao
,
X.
,
2015
, “
3D Printing of Highly Stretchable and Tough Hydrogels Into Complex, Cellularized Structures
,”
Adv. Mater.
,
27
(
27
), pp.
4035
4040
.
18.
Shi
,
W.
,
He
,
R.
, and
Liu
,
Y.
,
2015
, “
3D Printing Scaffolds With Hydrogel Materials for Biomedical Applications
,”
Eur. J. Biomed. Res.
,
1
(
3
), pp.
3
8
.
19.
Jiang
,
P.
,
Yan
,
C.
,
Guo
,
Y.
,
Zhang
,
X.
,
Cai
,
M.
,
Jia
,
X.
,
Wang
,
X.
, and
Zhou
,
F.
,
2019
, “
Direct Ink Writing With High-Strength and Swelling-Resistant Biocompatible Physically Crosslinked Hydrogels
,”
Biomaterials science
,
7
(
5
), pp.
1805
1814
.
20.
Cheng
,
Y.
,
Chan
,
K. H.
,
Wang
,
X.-Q.
,
Ding
,
T.
,
Li
,
T.
,
Lu
,
X.
, and
Ho
,
G. W.
,
2019
, “
Direct-Ink-Write 3D Printing of Hydrogels Into Biomimetic Soft Robots
,”
ACS Nano
,
13
(
11
), pp.
13176
13184
.
21.
Li
,
X.
,
Zhang
,
P.
,
Li
,
Q.
,
Wang
,
H.
, and
Yang
,
C.
,
2021
, “
Direct-Ink-Write Printing of Hydrogels Using Dilute Inks
,”
iScience
,
24
(
4
), p.
102319
.
22.
Kunwar
,
P.
,
Ransbottom
,
M. J.
, and
Soman
,
P.
,
2021
, “
Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook
,”
3D Print. Addit. Manuf.
,
9
(
5
), pp.
435
449
. doi.org/10.1089/3dp.2021.0256
23.
Li
,
X.
,
Wang
,
H.
,
Li
,
D.
,
Long
,
S.
,
Zhang
,
G.
, and
Wu
,
Z.
,
2018
, “
Dual Ionically Cross-Linked Double-Network Hydrogels With High Strength, Toughness, Swelling Resistance, and Improved 3D Printing Processability
,”
ACS Appl. Mater. Interfaces
,
10
(
37
), pp.
31198
31207
.
24.
Liu
,
S.
, and
Li
,
L.
,
2017
, “
Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26429
26437
.
25.
Zhang
,
M.
,
Deng
,
F.
,
Tang
,
L.
,
Wu
,
H.
,
Ni
,
Y.
,
Chen
,
L.
,
Huang
,
L.
,
Hu
,
X.
,
Lin
,
S.
, and
Ding
,
C.
,
2021
, “
Super-Ductile, Injectable, Fast Self-Healing Collagen-Based Hydrogels With Multi-Responsive and Accelerated Wound-Repair Properties
,”
Chem. Eng. J.
,
405
, p.
126756
.
26.
Schmieg
,
B.
,
Döbber
,
J.
,
Kirschhöfer
,
F.
,
Pohl
,
M.
, and
Franzreb
,
M.
,
2019
, “
Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis
,”
Front. Bioeng. Biotechnol.
,
6
, p.
211
.
27.
Schmieg
,
B.
,
Nguyen
,
M.
, and
Franzreb
,
M.
,
2020
, “
Simulative Minimization of Mass Transfer Limitations Within Hydrogel-Based 3D-Printed Enzyme Carriers
,”
Front. Bioeng. Biotechnol.
,
8
, p.
365
.
28.
Zhang
,
C.
,
Zheng
,
H.
,
Sun
,
J.
,
Zhou
,
Y.
,
Xu
,
W.
,
Dai
,
Y.
,
Mo
,
J.
, and
Wang
,
Z.
,
2022
, “
3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications
,”
Adv. Mater.
,
34
(
2
), p.
2105996
.
29.
Yang
,
R.
,
Guo
,
Z.
,
Yu
,
Z.
,
Du
,
F.
,
Thyagaraja
,
V. G. N.
,
Lin
,
L.
, et al
,
2023
, “
3D-Printed Conducting Polymer Hydrogel-Based DC Generator for Self-Powered Electromechanical Sensing
,”
Nano Energy
,
117
, p.
108857
.
30.
Hu
,
Y.
,
Broderick
,
S.
,
Guo
,
Z.
,
N’Diaye
,
A. T.
,
Bola
,
J. S.
,
Malissa
,
H.
,
Li
,
C.
, et al
,
2021
, “
Proton Switching Molecular Magnetoelectricity
,”
Nat. Commun.
,
12
(
1
), p.
4602
.
31.
Anandakrishnan
,
N.
,
Ye
,
H.
,
Guo
,
Z.
,
Chen
,
Z.
,
Mentkowski
,
K. I.
,
Lang
,
J. K.
,
Rajabian
,
N.
, et al
,
2021
, “
Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models
,”
Adv. Healthcare Mater.
,
10
(
10
), p.
2002103
.
32.
Kim
,
N.
,
Lee
,
H.
,
Han
,
G.
,
Kang
,
M.
,
Park
,
S.
,
Kim
,
D. E.
,
Lee
,
M.
, et al
,
2023
, “
3D-Printed Functional Hydrogel by DNA-Induced Biomineralization for Accelerated Diabetic Wound Healing
,”
Adv. Sci.
,
10
(
17
), p.
2300816
.
33.
Gogoi
,
P.
,
Li
,
Z.
,
Guo
,
Z.
,
Khuje
,
S.
,
An
,
L.
,
Hu
,
Y.
,
Chang
,
S.
,
Zhou
,
C.
, and
Ren
,
S.
,
2020
, “
Ductile Cooling Phase Change Material
,”
Nanoscale Adv.
,
2
(
9
), pp.
3900
3905
.
34.
Kuang
,
X.
,
Wu
,
J.
,
Chen
,
K.
,
Zhao
,
Z.
,
Ding
,
Z.
,
Hu
,
F.
,
Fang
,
D.
, and
Qi
,
H. J.
,
2019
, “
Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials
,”
Sci. Adv.
,
5
(
5
), p.
eaav5790
.
35.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
, et al
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
36.
Hu
,
Y.
,
Guo
,
Z.
,
Ragonese
,
A.
,
Zhu
,
T.
,
Khuje
,
S.
,
Li
,
C.
,
Grossman
,
J. C.
,
Zhou
,
C.
,
Nouh
,
M.
, and
Ren
,
S.
,
2020
, “
A 3D-Printed Molecular Ferroelectric Metamaterial
,”
Proc. Natl. Acad. Sci. U. S. A.
,
117
(
44
), pp.
27204
27210
.
37.
Yang
,
C.
, and
Suo
,
Z.
,
2018
, “
Hydrogel Ionotronics
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
125
142
.
38.
Zhang
,
B.
,
Li
,
S.
,
Hingorani
,
H.
,
Serjouei
,
A.
,
Larush
,
L.
,
Pawar
,
A. A.
,
Goh
,
W. H.
, et al
,
2018
, “
Highly Stretchable Hydrogels for UV Curing Based High-Resolution Multimaterial 3D Printing
,”
J. Mater. Chem. B
,
6
(
20
), pp.
3246
3253
.
39.
Zhou
,
C.
,
Ye
,
H.
, and
Zhang
,
F.
,
2014
, “
A Novel Low-Cost Stereolithography Process Based on Vector Scanning and Mask Projection for High-Accuracy, High-Speed, High-Throughput and Large-Area Fabrication
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo NY
,
Aug. 17
, Vol. 46285, American Society of Mechanical Engineers, p. V01AT02A068.
40.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyp. J.
,
19
(
3
), pp.
153
165
.
41.
Liravi
,
F.
,
Das
,
S.
, and
Zhou
,
C.
,
2015
, “
Separation Force Analysis and Prediction Based on Cohesive Element Model for Constrained-Surface Stereolithography Processes
,”
Comput.-Aided Des.
,
69
, pp.
134
142
.
42.
Guo
,
Z.
,
An
,
L.
,
Khuje
,
S.
,
Chivate
,
A.
,
Li
,
J.
,
Wu
,
Y.
,
Hu
,
Y.
,
Armstrong
,
J.
,
Ren
,
S.
, and
Zhou
,
C.
,
2022
, “
3D-Printed Electrically Conductive Silicon Carbide
,”
Addit. Manuf.
,
59
, p.
103109
.
43.
Kunwar
,
P.
,
Xiong
,
Z.
,
Mcloughlin
,
S. T.
, and
Soman
,
P.
,
2020
, “
Oxygen-Permeable Films for Continuous Additive, Subtractive, and Hybrid Additive/Subtractive Manufacturing
,”
3D Print. Addit. Manuf.
,
7
(
5
), pp.
216
221
.
44.
Walker
,
D. A.
,
Hedrick
,
J. L.
, and
Mirkin
,
C. A.
,
2019
, “
Rapid, Large-Volume, Thermally Controlled 3D Printing Using a Mobile Liquid Interface
,”
Science
,
366
(
6463
), pp.
360
364
.
45.
Ye
,
H.
,
Venketeswaran
,
A.
,
Das
,
S.
, and
Zhou
,
C.
,
2017
, “
Investigation of Separation Force for Constrained-Surface Stereolithography Process From Mechanics Perspective
,”
Rapid Prototyp. J.
,
23
(
4
), pp.
696
710
.
46.
Jin
,
J.
,
Yang
,
J.
,
Mao
,
H.
, and
Chen
,
Y.
,
2018
, “
A Vibration-Assisted Method to Reduce Separation Force for Stereolithography
,”
J. Manuf. Processes
,
34
, pp.
793
801
.
47.
Qu
,
S.
,
2022
, “
3D Printing of Hydrogel Electronics
,”
Nat. Electron.
,
5
(
12
), pp.
838
839
.
48.
Rutz
,
A. L.
,
Hyland
,
K. E.
,
Jakus
,
A. E.
,
Burghardt
,
W. R.
, and
Shah
,
R. N.
,
2015
, “
A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels
,”
Adv. Mater.
,
27
(
9
), pp.
1607
1614
.
49.
Sather
,
N. A.
,
Sai
,
H.
,
Sasselli
,
I. R.
,
Sato
,
K.
,
Ji
,
W.
,
Synatschke
,
C. V.
,
Zambrotta
,
R. T.
, et al
,
2021
, “
3D Printing of Supramolecular Polymer Hydrogels With Hierarchical Structure
,”
Small
,
17
(
5
), p.
2005743
.
50.
Sun
,
Q.
,
Sun
,
J.
,
Guo
,
K.
, and
Wang
,
L.
,
2022
, “
Compressive Mechanical Properties and Energy Absorption Characteristics of SLM Fabricated Ti6Al4V Triply Periodic Minimal Surface Cellular Structures
,”
Mech. Mater.
,
166
, p.
104241
.
51.
Al-Ketan
,
O.
,
Rowshan
,
R.
, and
Al-Rub
,
R. K. A.
,
2018
, “
Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials
,”
Addit. Manuf.
,
19
, pp.
167
183
.
52.
Yu
,
S.
,
Sun
,
J.
, and
Bai
,
J.
,
2019
, “
Investigation of Functionally Graded TPMS Structures Fabricated by Additive Manufacturing
,”
Mater. Des.
,
182
, p.
108021
.
53.
Fu
,
J.
,
Sun
,
P.
,
Du
,
Y.
,
Li
,
H.
,
Zhou
,
X.
, and
Tian
,
Q.
,
2022
, “
Isotropic Design and Mechanical Characterization of TPMS-Based Hollow Cellular Structures
,”
Compos. Struct.
,
279
, p.
114818
.
54.
Feng
,
J.
,
Liu
,
B.
,
Lin
,
Z.
, and
Fu
,
J.
,
2021
, “
Isotropic Porous Structure Design Methods Based on Triply Periodic Minimal Surfaces
,”
Mater. Des.
,
210
, p.
110050
.
55.
Rastegarzadeh
,
S.
,
Muthusamy
,
S.
, and
Huang
,
J.
,
2023
, “
Mechanical Profile of Smooth Cellular Materials
,”
ASME J. Manuf. Sci. Eng.
,
145
(
2
), p.
021005
.
You do not currently have access to this content.