Abstract

Selecting suitable cutting conditions is crucial in maintaining chatter stability and achieving acceptable surface quality. However, the selection of a constant set of cutting parameters is not feasible due to the time-varying dynamics of highly flexible thin-walled blades. This paper presents an optimal selection of tool orientation and spindle speed along the tool path as the metal is removed during the ball-end milling of blades. The effects of tool orientation and speed on the mechanics and dynamics of the ball-end milling process are formulated. Test case simulations are used to demonstrate the impact of tool orientation and speed on chatter stability and forced vibrations. The proposed algorithm identifies the optimal spindle speed and tool orientation by continuously updating the workpiece dynamics as a function of time and tool position to achieve improved stability and surface quality. Stability simulations are conducted to assess the optimization approach's performance, and the results are compared with experiments by machining a series of thin-walled twisted fan blades.

References

1.
Yan
,
Q.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Multi-Axis Variable Depth-of-Cut Machining of Thin-Walled Workpieces Based on the Workpiece Deflection Constraint
,”
Comput. Aided Des.
,
100
, pp.
14
29
.
2.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Operations-Part I: Process Simulation
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051004
.
3.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2008
, “
Virtual Simulation and Optimization of Milling Applications—Part II: Optimization and Feedrate Scheduling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051005
.
4.
Merdol
,
D. S.
,
2008
, “
Virtual Three-Axis Milling Process Simulation and Optimization
,” Doctoral dissertation,
University of British Columbia
,
Vancouver, Canad
a.
5.
Li
,
J.
,
Yang
,
X.
,
Ren
,
C.
,
Chen
,
G.
,
Wang
,
Y.
,
Li
,
J.
,
Yang
,
X.
,
Ren
,
C.
,
Chen
,
G.
, and
Wang
,
Y.
,
2015
, “
Multiobjective Optimization of Cutting Parameters in Ti-6Al-4V Milling Process Using Nondominated Sorting Genetic Algorithm-II
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
941
953
.
6.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
7.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
.
8.
Huang
,
T.
,
Zhang
,
X. M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
.
9.
Zhang
,
X.
,
Zhang
,
J.
,
Zheng
,
X.
,
Pang
,
B.
, and
Zhao
,
W.
,
2017
, “
Tool Orientation Optimization of 5-Axis Ball-End Milling Based on an Accurate Cutter/Workpiece Engagement Model
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
106
116
.
10.
Tunc
,
L. T.
,
Budak
,
E.
,
Bilgen
,
S.
, and
Zatarain
,
M.
,
2016
, “
Process Simulation Integrated Tool Axis Selection for 5-Axis Tool Path Generation
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
381
384
.
11.
Layegh K.
,
S. E.
,
Yigit
,
I. E.
, and
Lazoglu
,
I.
,
2015
, “
Analysis of Tool Orientation for 5-Axis Ball-End Milling of Flexible Parts
,”
CIRP Ann. Manuf. Technol.
,
64
(
1
), pp.
97
100
.
12.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
13.
Habibi
,
M.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2021
, “
Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
143
(
2
), p.
021009
.
14.
Tunc
,
L. T.
, and
Zatarain
,
M.
,
2019
, “
Stability Optimal Selection of Stock Shape and Tool Axis in Finishing of Thin-Wall Parts
,”
CIRP Ann.
,
68
(
1
), pp.
401
404
.
15.
Takemura
,
T.
,
Kitamura
,
T.
, and
Hoshi
,
T.
,
1974
, “
Active Suppression of Chatter By Programmed Variation of Spindle Speed
,”
Ann. CIRP
,
23
(
1
), pp.
121
122
.
16.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
785
808
.
17.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
.
18.
Mañé
,
I.
,
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
, and
Ray
,
P.
,
2008
, “
Stability-Based Spindle Speed Control During Flexible Workpiece High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
48
(
2
), pp.
184
194
.
19.
Ringgaard
,
K.
,
Mohammadi
,
Y.
,
Merrild
,
C.
,
Balling
,
O.
, and
Ahmadi
,
K.
,
2019
, “
Optimization of Material Removal Rate in Milling of Thin-Walled Structures Using Penalty Cost Function
,”
Int. J. Mach. Tools Manuf.
,
145
, p.
103430
.
20.
Petráček
,
P.
,
Falta
,
J.
,
Stejskal
,
M.
,
Šimůnek
,
A.
,
Kupka
,
P.
, and
Sulitka
,
M.
,
2023
, “
Chatter-Free Milling Strategy of a Slender Blisk Blade via Stock Distribution Optimization and Continuous Spindle Speed Change
,”
Int. J. Adv. Manuf. Technol.
,
124
(
3–4
), pp.
1273
1295
.
21.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters.: Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
22.
Lee
,
P.
, and
Altintaş
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
23.
Budak
,
E.
,
Altintaş
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
24.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
25.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
26.
Karimi
,
B.
, and
Altintas
,
Y.
,
2022
, “
Hybrid Modeling of Position-Dependent Dynamics of Thin-Walled Parts Using Shell Elements for Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081014
.
27.
2023
,
MACHPRO-Virtual Machining System
,
Manufacturing Automation Laboratory, The University of British Columbia
,
Vancouver, BC, Canada
.
28.
van Dijk
,
N. J. M.
,
Doppenberg
,
E. J. J.
,
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
,
2010
, “
Automatic In-Process Chatter Avoidance in the High-Speed Milling Process
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
031006
.
29.
Caliskan
,
H.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2018
, “
On-Line Energy-Based Milling Chatter Detection
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111012
.
30.
Schmitz
,
T. L.
, and
Mann
,
B. P.
,
2006
, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1369
1377
.
31.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
.
You do not currently have access to this content.