Abstract

The five-axis ball-end milling dynamics of thin-walled blades is presented. The cutting forces are predicted from the ball-end mill–blade geometry engagement maps along the toolpath. The Frequency Response Function (FRF) of the thin-walled blade is predicted using Finite Element shell elements, and it is updated along the toolpath as the metal is removed. The predicted cutting forces are applied on both the workpiece and tool FRFs to predict the forced vibrations and chatter stability at each tool location. A simplified method to update the cutter-workpiece engagement (CWE) is used to obtain the three-dimensional stability lobe diagram at each desired point on the blade. The integrated model is used to simulate the five-axis machining of thin-walled blades in the digital environment. The proposed digital model is experimentally validated by machining a series of thin-walled rectangular plates and a twisted fan blade.

References

1.
Budak
,
E.
,
Tunç
,
L. T.
,
Alan
,
S.
, and
Özgüven
,
H. N.
,
2012
, “
Prediction of Workpiece Dynamics and Its Effects on Chatter Stability in Milling
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
339
342
.
2.
Tian
,
W.
,
Ren
,
J.
,
Zhou
,
J.
, and
Wang
,
D.
,
2018
, “
Dynamic Modal Prediction and Experimental Study of Thin-Walled Workpiece Removal Based on Perturbation Method
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2099
2113
.
3.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Frequency Domain Updating of Thin-Walled Workpiece Dynamics Using Reduced Order Substructuring Method in Machining
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071013
.
4.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011015
.
5.
Wang
,
D.
,
Ren
,
J.
,
Tian
,
W.
,
Shi
,
K.
, and
Zhang
,
B.
,
2019
, “
Predicting the Dynamics of Thin-Walled Parts With Curved Surfaces in Milling Based on FEM and Taylor Series
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
927
942
.
6.
Grossi
,
N.
,
Scippa
,
A.
,
Croppi
,
L.
,
Morelli
,
L.
, and
Campatelli
,
G.
,
2019
, “
Adaptive Toolpath for 3-Axis Milling of Thin Walled Parts
,”
MM Sci. J.
,
2019
(
4
), pp.
3378
3385
.
7.
Zhang
,
X. M.
,
Zhu
,
L. M.
, and
Ding
,
H.
,
2010
, “
Matrix Perturbation Method for Predicting Dynamic Modal Shapes of the Workpiece in High-Speed Machining
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
224
(
1
), pp.
177
183
.
8.
Karimi
,
B.
, and
Altintas
,
Y.
,
2022
, “
Hybrid Modeling of Position-Dependent Dynamics of Thin-Walled Parts Using Shell Elements for Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081014
.
9.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
357
362
.
10.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling–Part I: General Formulation
,”
ASME J. Dyn. Sys., Meas., Control.
,
120
(
1
), pp.
22
30
.
11.
Altıntaş
,
Y.
,
Shamoto
,
E.
,
Lee
,
P.
, and
Budak
,
E.
,
2008
, “
Analytical Prediction of Stability Lobes in Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
586
592
.
12.
Yan
,
B.
, and
Zhu
,
L.
,
2019
, “
Research on Milling Stability of Thin-Walled Parts Based on Improved Multi-Frequency Solution
,”
Int. J. Adv. Manuf. Technol.
,
102
(
1–4
), pp.
431
441
.
13.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
14.
Sun
,
Y.
, and
Jiang
,
S.
,
2018
, “
Predictive Modeling of Chatter Stability Considering Force-Induced Deformation Effect in Milling Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
38
52
.
15.
Yang
,
Y.
,
Zhang
,
W.-H.
,
Ma
,
Y.-C.
, and
Wan
,
M.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
36
48
.
16.
Zhang
,
Z.
,
Luo
,
M.
,
Wu
,
B.
, and
Zhang
,
D.
,
2021
, “
Dynamic Modeling and Stability Prediction in Milling Process of Thin-Walled Workpiece With Multiple Structural Modes
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
235
(
14
), pp.
2205
2218
.
17.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Dynamics and Stability of Five-Axis Ball-End Milling
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021003
.
18.
Schmitz
,
T. L.
,
Ziegert
,
J. C.
,
Canning
,
J. S.
, and
Zapata
,
R.
,
2008
, “
Case Study: A Comparison of Error Sources in High-Speed Milling
,”
Precis. Eng.
,
32
(
2
), pp.
126
133
.
19.
Schmitz
,
T. L.
, and
Mann
,
B. P.
,
2006
, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1369
1377
.
20.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
21.
Khandagale
,
P.
,
Bhakar
,
G.
,
Kartik
,
V.
, and
Joshi
,
S. S.
,
2018
, “
Modelling Time-Domain Vibratory Deflection Response of Thin-Walled Cantilever Workpieces During Flank Milling
,”
J. Manuf. Process.
,
33
, pp.
278
290
.
22.
Eksioglu
,
C.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2012
, “
Discrete-Time Prediction of Chatter Stability, Cutting Forces, and Surface Location Errors in Flexible Milling Systems
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061006
.
23.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
24.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
.
25.
Lee
,
P.
, and
Altintaş
,
Y.
,
1996
, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
1059
1072
.
26.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters.: Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
.
27.
MACHPRO, “Virtual Machining System”
,
2023
,
Manufacturing Automation Laboratory, The University of British Columbia, Vancouver, BC, Canada.
.
28.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
, 2nd ed.,
Cambridge University Press
.
29.
Campomanes
,
M. L.
, and
Altintas
,
Y.
,
2003
, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
416
422
.
30.
Merdol
,
S. D.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
31.
Olgac
,
N.
, and
Zhao
,
G.
,
1987
, “
A Relative Stability Study on the Dynamics of the Turning Mechanism
,”
ASME J. Dyn. Sys., Meas., Control.
,
109
(
2
), pp.
164
170
.
32.
Eynian
,
M.
,
2010
, “
Chatter Stability of Turning and Milling with Process Damping
,” Doctoral Dissertation, University of British Columbia, Vancouver, Canada.
33.
Yao
,
Z.
,
2005
, “
Finding Cutter Engagement for Ball End Milling of Tessellated Free-Form Surfaces
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
121
127
.
You do not currently have access to this content.