Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Gears represent a fundamental component of automotive transmissions, the performance of which is directly influenced by flank surface integrity. With the exception of grinding, gear production does not require the use of lubricants. The elimination of oils in the final finishing phase represents an important opportunity to greatly improve process sustainability and reduce production costs. However, dry grinding presents several challenges, including dimensional tolerances and roughness requirements, microstructural defects due to excessive heat generation, and maintaining the overall surface integrity of flanks such that wear resistance is not compromised. The present work investigates the geometric accuracy, microstructure, and wear resistance of FIAT 500 4/6 speed gears manufactured by FCA/Stellantis, comparing conventional wet grinding with two alternative processes including superfinishing and dry grinding. The material and manufacturing processes employed prior to grinding were the same in all cases, with grinding then performed by the same manufacturer. The dimensional accuracy, roughness, microstructure, residual stress state, and wear resistance of gear flanks were then analyzed to compare the overall performance of each grinding process. The obtained results show that dry grinding can produce gears with acceptable geometric accuracy, no microstructure defects and greater wear resistance than gears finished with conventional wet grinding or superfinishing. As a result, the complete elimination of lubricant in gear production is possible, leading to a more sustainable process without compromising gear performance.

References

1.
Gupta
,
K.
,
Laubscher
,
R. F.
,
Davim
,
J. P.
, and
Jain
,
N. K.
,
2016
, “
Recent Developments in Sustainable Manufacturing of Gears: A Review
,”
J. Clean. Prod.
,
112
, pp.
3320
3330
.
2.
Gupta
,
K.
,
Jain
,
N. K.
, and
Laubscher
,
R.
,
2017
, “Measurement of Gear Accuracy,”
Advanced Gear Manufacturing and Finishing
,
K.
Gupta
,
N. K.
Jain
, and
R.
Laubscher
, eds.,
Academic Press
,
London
, pp.
197
218
.
3.
Karpuschewski
,
B.
,
Knoche
,
H.-J.
, and
Hipke
,
M.
,
2008
, “
Gear Finishing by Abrasive Processes
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
621
640
.
4.
Karpuschewski
,
B.
,
Beutner
,
M.
,
Eckebrecht
,
J.
,
Heinzel
,
J.
, and
Hüsemann
,
T.
,
2020
, “
Surface Integrity Aspects in Gear Manufacturing
,”
Proc. CIRP
,
87
, pp.
3
12
.
5.
Li
,
H.
, and
Axinte
,
D.
,
2017
, “
On a Stochastically Grain-Discretised Model for 2D/3D Temperature Mapping Prediction in Grinding
,”
Int. J. Mach. Tools Manuf.
,
116
, pp.
60
76
.
6.
Brecher
,
C.
,
Bäumler
,
S.
,
Jasper
,
D.
, and
Triebs
,
J.
,
2012
, “
Energy Efficient Cooling Systems for Machine Tools
,”
Proceedings of 19th CIRP International Conference on Life Cycle Engineering
,
Berkley, CA
,
May 23–25
, pp.
239
244
.
7.
Teixeira
,
P. H. O.
,
Rego
,
R. R.
,
Pinto
,
F. W.
,
de Oliveira Gomes
,
J.
, and
Löpenhaus
,
C.
,
2019
, “
Application of Hall Effect for Assessing Grinding Thermal Damage
,”
J. Mater. Process. Technol.
,
270
, pp.
356
364
.
8.
Shu
,
L.
,
Fang
,
Z.
,
Wang
,
C.
,
Katsuma
,
T.
,
Zhang
,
B.
, and
Sugita
,
N.
,
2023
, “
Effect of Single-Grit Wear on Surface Integrity of Hardened Stainless Steel in Dry Grinding
,”
CIRP Ann. Manuf. Technol.
,
72
(
1
), pp.
259
262
.
9.
Lerra
,
F.
,
Liverani
,
E.
,
Ascari
,
A.
, and
Fortunato
,
A.
,
2022
, “
Prediction of the Grinding Wheel Specification Influence on Thermal Defects in Dry Grinding Through a Hierarchical FEM Model
,”
Int. J. Adv. Manuf. Technol
,
121
(
7
), pp.
5519
5536
.
10.
Guerrini
,
G.
,
Lerra
,
F.
, and
Fortunato
,
A.
,
2019
, “
The Effect of Radial Infeed on Surface Integrity in Dry Generating Gear Grinding for Industrial Production of Automotive Transmission Gears
,”
J. Manuf. Processes
,
45
, pp.
234
241
.
11.
Shu
,
L.
,
Fang
,
Z.
,
Wang
,
C.
,
Katsuma
,
T.
,
Zhang
,
B.
, and
Sugita
,
N.
,
2023
, “
Prospects of Dry Continuous Generating Grinding Based on Specific Energy Requirement
,”
CIRP Ann. Manuf. Technol.
,
72
(
1
), pp.
259
262
.
12.
Kizaki
,
T.
,
Katsuma
,
T.
,
Ochi
,
M.
, and
Fukui
,
R.
,,
2019
, “
Direct Observation and Analysis of Heat Generation at the Grit-Workpiece Interaction Zone in a Continuous Generating Gear Grinding
,”
CIRP Annals
,
68
(
1
), pp.
417
422
.
13.
Budak
,
E.
, and
Jamshidi
,
H.
,
2021
, “
On the Prediction of Surface Burn and Its Thickness in Grinding Processes
,”
CIRP Ann. Manuf. Technol.
,
70
(
1
), pp.
285
288
.
14.
Mallipeddi
,
D.
,
Norell
,
M.
,
Sosa
,
M.
, and
Nyborg
,
L.
,
2019
, “
The Effect of Manufacturing Method and Running-In Load on the Surface Integrity of Efficiency Tested Ground, Honed and Superfinished Gears
,”
Tribol. Int.
,
131
, pp.
277
287
.
15.
Zhou
,
W.
,
Tang
,
J.
, and
Shao
,
W.
,
2020
, “
Study on Surface Generation Mechanism and Roughness Distribution in Gear Profile Grinding
,”
Int. J. Mech. Sci.
,
187
, p.
105921
.
16.
Zhang
,
B.
,
Liu
,
H.
,
Zhu
,
C.
, and
Li
,
Z.
,
2019
, “
Numerical Simulation of Competing Mechanism Between Pitting and Micro-Pitting of a Wind Turbine Gear Considering Surface Roughness
,”
Eng. Fail. Anal.
,
104
, pp.
1
12
.
17.
Wang
,
W.
,
Liu
,
H.
,
Zhu
,
C.
,
Tang
,
J.
, and
Jiang
,
C.
,
2020
, “
Evaluation of Contact Fatigue Risk of a Carburized Gear Considering Gradients of Mechanical Properties
,”
Friction
,
8
(
6
), pp.
1039
1050
.
18.
Liu
,
H.
,
Liu
,
H.
,
Zhu
,
C.
,
He
,
H.
, and
Wei
,
P.
,
2018
, “
Evaluation of Contact Fatigue Life of a Wind Turbine Gear Pair Considering Residual Stress
,”
ASME J. Tribol.
,
140
(
4
), p.
041102
.
19.
Cui
,
L.
, and
Su
,
Y.
,
2022
, “
Contact Fatigue Life Prediction of Rolling Bearing Considering Machined Surface Integrity
,”
Ind. Lubr. Tribol.
,
74
(
1
), pp.
73
80
.
20.
Hultgren
,
G.
,
Mansour
,
R.
,
Barsoum
,
Z.
, and
Olsson
,
N.
,
2021
, “
Fatigue Probability Model for AWJcut Steel Including Surface Roughness and Residual Stress
,”
J. Constr. Steel Res.
,
179
, p.
106537
.
21.
Zhang
,
X.
,
Wei
,
P.
,
Parker
,
R.
,
Liu
,
G.
,
Liu
,
H.
, and
Wu
,
S.
,
2022
, “
Study on the Relation Between Surface Integrity and Contact Fatigue of Carburized Gears
,”
Int. J. Fatigue
,
165
, p.
107203
.
22.
Mallipeddi
,
D.
,
Norell
,
M.
,
Sosa
,
M.
, and
Nyborg
,
L.
,
2017
, “
Influence of Running-In on Surface Characteristics of Efficiency Tested Ground Gears
,”
Tribol. Int.
,
115
, pp.
45
58
.
23.
Mallipeddi
,
D.
,
Norell
,
M.
,
Naidu
,
V.
,
Zhang
,
X.
,
Näslund
,
M.
, and
Nyborg
,
L.
,
2021
, “
Micropitting and Microstructural Evolution During Gear Testing-From Initial Cycles to Failure
,”
Tribol. Int.
,
156
, p.
106820
.
24.
Bergstedt
,
E.
,
Lin
,
J.
,
Andreasson
,
M.
,
Bergseth
,
E.
, and
Olofsson
,
U.
,
2021
, “
Gear Micropitting Initiation of Ground and Superfinished Gears: Wrought Versus Pressed and Sintered Steel
,”
Tribol. Int.
,
160
, p.
107062
.
25.
Malkin
,
S.
, and
Guo
,
C.
,
2008
, “Fluid Flow in Grinding,”
Grinding Technology
,
Industrial Press
,
New York
, pp.
231
255
.
26.
Guerrini
,
G.
,
Landi
,
E.
,
Peiffer
,
K.
, and
Fortunato
,
A.
,
2018
, “
Dry Grinding of Gears for Sustainable Automotive Transmission Production
,”
J. Clean. Prod.
,
176
, pp.
76
88
.
27.
Yang
,
S.
,
Jin
,
X.
,
Engin
,
S.
,
Kountanya
,
R.
,
El-Wardany
,
T.
, and
Lee
,
S.
,
2023
, “
Effect of Cutting Fluids on Surface Residual Stress in Machining of Waspaloy
,”
J. Mater. Process. Technol.
,
322
, p.
118170
.
28.
Azarhoushang
,
B.
,
Daneshi
,
A.
, and
Lee
,
D.
,
2017
, “
Evaluation of Thermal Damages and Residual Stresses in Dry Grinding by Structured Wheels
,”
J. Clean. Prod.
,
142
, pp.
1922
1930
.
29.
Salonitis
,
K.
, and
Kolios
,
A.
,
2015
, “
Experimental and Numerical Study of Grind-Hardening-Induced Residual Stresses on AISI 1045 Steel
,”
Int. J. Adv. Manuf. Technol.
,
79
(
9–12
), pp.
1443
1452
.
You do not currently have access to this content.