Abstract

The process parameters of Directed Energy Deposition (DED) have been widely studied including laser power, powder flow rate, and scanning speed. These parameters affect clad dimension and melt pool temperature, which are directly related to part quality. However, laser/powder profiles and their alignment have obtained less attention due to the cumbersome characterization process, although they can be directly associated with local energy density for melt pool formation. This study examines the impact of the alignment between the laser beam and powder flow distributions in DED on clad dimension and melt pool temperature. The laser beam and powder profiles are characterized by measuring their respective 2D Gaussian profiles for a given standoff distance. Aligned and misaligned laser-powder profiles are then used to build single-clad square geometries. It was found that a 500-µm offset between the centers of the laser and powder profiles causes up to a 20% change in both the width and the height of a single clad as well as an average temperature increase of 100 K. To understand the interaction between powder flow, energy flux, and local temperature, the local specific energy density distribution was plotted in 2D. These results suggest that laser-powder misalignment may significantly alter the thermal history and shape of deposited clads, possibly preventing DED-manufactured parts from meeting design properties and causing build failures.

References

1.
Yan
,
L.
,
Chen
,
Y.
, and
Liou
,
F.
,
2020
, “
Additive Manufacturing of Functionally Graded Metallic Materials Using Laser Metal Deposition
,”
Addit. Manuf.
,
31
, p.
100901
.
2.
Barragan
,
G.
,
Rojas Perilla
,
D. A.
,
Grass Nuñez
,
J.
,
Mariani
,
F.
, and
Coelho
,
R.
,
2021
, “
Characterization and Optimization of Process Parameters for Directed Energy Deposition Powder-Fed Laser System
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
5297
5306
.
3.
Zheng
,
B.
,
Xiong
,
Y.
,
Nguyen
,
J.
,
Smugeresky
,
J.
,
Zhou
,
Y.
,
Lavernia
,
E.
, and
Schoenung
,
J.
,
2009
, “
Powder Additive Processing With Laser Engineered net Shaping (LENS)
,”
Powder Metall. Res. Trends
,
125
.
4.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
.
5.
Bax
,
B.
,
Rajput
,
R.
,
Kellet
,
R.
, and
Reisacher
,
M.
,
2018
, “
Systematic Evaluation of Process Parameter Maps for Laser Cladding and Directed Energy Deposition
,”
Addit. Manuf.
,
21
, pp.
487
494
.
6.
Guo
,
C.
,
He
,
S.
,
Yue
,
H.
,
Li
,
Q.
, and
Hao
,
G.
,
2021
, “
Prediction Modelling and Process Optimization for Forming Multi-Layer Cladding Structures With Laser Directed Energy Deposition
,”
Optics & Laser Technol.
,
134
, p.
106607
.
7.
Feenstra
,
D.
,
Molotnikov
,
A.
, and
Birbilis
,
N.
,
2021
, “
Utilisation of Artificial Neural Networks to Rationalise Processing Windows in Directed Energy Deposition Applications
,”
Mater. Des.
,
198
, p.
109342
.
8.
Bennett
,
J. L.
,
Wolff
,
S. J.
,
Hyatt
,
G.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2017
, “
Thermal Effect on Clad Dimension for Laser Deposited Inconel 718
,”
J. Manuf. Process.
,
28
, pp.
550
557
.
9.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward PID Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
, pp.
280
292
.
10.
Zhou
,
V.
,
Odum
,
K.
,
Soshi
,
M.
, and
Yamazaki
,
K.
,
2022
, “
Development of a Height Control System Using a Dynamic Powder Splitter for Directed Energy Deposition (DED) Additive Manufacturing
,”
Prog. Addit. Manuf.
,
7
(
5
), pp.
1085
1092
.
11.
Schaible
,
J.
,
Hau
,
L. A.
,
Weber
,
D.
,
Schopphoven
,
T.
,
Häfner
,
C.
, and
Schleifenbaum
,
J. H.
,
2021
, “
Particle Velocity Measurement in Powder Gas Jets of Coaxial Powder Nozzles for Laser Material Deposition
,”
J. Laser Appl.
,
33
(
1
), p.
012019
.
12.
Doubenskaia
,
M.
,
Kulish
,
A.
,
Sova
,
A.
,
Petrovskiy
,
P.
, and
Smurov
,
I.
,
2021
, “
Experimental and Numerical Study of Gas-Powder Flux in Coaxial Laser Cladding Nozzles of Precitec
,”
Surf. Coat. Technol.
,
406
, p.
126672
.
13.
Eisenbarth
,
D.
,
Esteves
,
P. M. B.
,
Wirth
,
F.
, and
Wegener
,
K.
,
2019
, “
Spatial Powder Flow Measurement and Efficiency Prediction for Laser Direct Metal Deposition
,”
Surf. Coat. Technol.
,
362
, pp.
397
408
.
14.
Tan
,
H.
,
Shang
,
W.
,
Zhang
,
F.
,
Clare
,
A. T.
,
Lin
,
X.
,
Chen
,
J.
, and
Huang
,
W.
,
2018
, “
Process Mechanisms Based on Powder Flow Spatial Distribution in Direct Metal Deposition
,”
J. Mater. Process. Technol.
,
254
, pp.
361
372
.
15.
Bayat
,
M.
,
Nadimpalli
,
V. K.
,
Biondani
,
F. G.
,
Jafarzadeh
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
,
Bissacco
,
G.
,
Pedersen
,
D. B.
, and
Hattel
,
J. H.
,
2021
, “
On the Role of the Powder Stream on the Heat and Fluid Flow Conditions During Directed Energy Deposition of Maraging Steel—Multiphysics Modeling and Experimental Validation
,”
Addit. Manuf.
,
43
, p.
102021
.
16.
Zheng
,
B.
,
Haley
,
J.
,
Yang
,
N.
,
Yee
,
J.
,
Terrassa
,
K.
,
Zhou
,
Y.
,
Lavernia
,
E.
, and
Schoenung
,
J.
,
2019
, “
On the Evolution of Microstructure and Defect Control in 316L SS Components Fabricated via Directed Energy Deposition
,”
Mater. Sci. Eng. A
,
764
, p.
138243
.
17.
Kriczky
,
D. A.
,
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Nassar
,
A. R.
, and
Craig
,
J.
,
2015
, “
3D Spatial Reconstruction of Thermal Characteristics in Directed Energy Deposition Through Optical Thermal Imaging
,”
J. Mater. Process. Technol.
,
221
, pp.
172
186
.
18.
Hao
,
J.
,
Meng
,
Q.
,
Li
,
C.
,
Li
,
Z.
, and
Wu
,
D.
,
2019
, “
Effects of Tilt Angle Between Laser Nozzle and Substrate on Bead Morphology in Multi-Axis Laser Cladding
,”
J. Manuf. Process.
,
43
, pp.
311
322
.
19.
Liao
,
S.
,
Webster
,
S.
,
Huang
,
D.
,
Council
,
R.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2022
, “
Simulation-Guided Variable Laser Power Design for Melt Pool Depth Control in Directed Energy Deposition
,”
Addit. Manuf.
,
56
, p.
102912
.
20.
Lane
,
B.
,
Jacquemetton
,
L.
,
Piltch
,
M.
,
Beckett
,
D.
, et al
,
2020
, “
Thermal Calibration of Commercial Melt Pool Monitoring Sensors on a Laser Powder bed Fusion System
,”
NIST Adv. Manuf. Series
, p.
100-35
.
21.
Jeong
,
J.
,
Webster
,
S.
,
Liao
,
S.
,
Mogonye
,
J.-E.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2022
, “
Cooling Rate Measurement in Directed Energy Deposition Using Photodiode-Based Planck Thermometry (PDPT)
,”
Addit. Manuf. Lett.
,
3
, p.
100101
.
22.
Zhang
,
Z.
,
Liu
,
Z.
, and
Wu
,
D.
,
2021
, “
Prediction of Melt Pool Temperature in Directed Energy Deposition Using Machine Learning
,”
Addit. Manuf.
,
37
, p.
101692
.
23.
Song
,
L.
, and
Mazumder
,
J.
,
2010
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
.
24.
Wang
,
Q.
,
Li
,
J.
,
Gouge
,
M.
,
Nassar
,
A. R.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2017
, “
Physics-Based Multivariable Modeling and Feedback Linearization Control of Melt-Pool Geometry and Temperature in Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021013
.
25.
Gibson
,
B. T.
,
Bandari
,
Y. K.
,
Richardson
,
B. S.
,
Henry
,
W. C.
,
Vetland
,
E. J.
,
Sundermann
,
T. W.
, and
Love
,
L. J.
,
2020
, “
Melt Pool Size Control Through Multiple Closed-Loop Modalities in Laser-Wire Directed Energy Deposition of Ti-6Al-4V
,”
Addit. Manuf.
,
32
, p.
100993
.
26.
Smoqi
,
Z.
,
Bevans
,
B. D.
,
Gaikwad
,
A.
,
Craig
,
J.
,
Abul-Haj
,
A.
,
Roeder
,
B.
,
Macy
,
B.
,
Shield
,
J. E.
, and
Rao
,
P.
,
2022
, “
Closed-Loop Control of Melt Pool Temperature in Directed Energy Deposition
,”
Mater. Des.
,
215
, p.
110508
.
27.
Traxel
,
K. D.
,
Malihi
,
D.
,
Starkey
,
K.
, and
Bandyopadhyay
,
A.
,
2020
, “
Model-Driven Directed-Energy-Deposition Process Workflow Incorporating Powder Flowrate as Key Parameter
,”
Manuf. Lett.
,
25
, pp.
88
92
.
28.
Takemura
,
S.
,
Koike
,
R.
,
Kakinuma
,
Y.
,
Sato
,
Y.
, and
Oda
,
Y.
,
2019
, “
Design of Powder Nozzle for High Resource Efficiency in Directed Energy Deposition Based on Computational Fluid Dynamics Simulation
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4107
4121
.
You do not currently have access to this content.