Abstract

Supersonic cold spray (CS) of functional nanomaterials from atomized droplets has attracted significant attention in advanced thin-film coating as it enables particle deposition with high-adhesion strength. In CS, optimum design of the supersonic nozzle (i.e., converging-diverging nozzle) is essential for accelerating particles to desired velocities. However, research on the nozzle design for supersonically spraying of “liquid droplets” for nanocoating applications is limited. To this end, we investigate the effect of nozzle geometrical parameters, including throat diameter, exit diameter, and divergent length on droplets impact velocity by numerical modeling and experimental validation, followed by a case study on nanocoating. The discrete-phase modeling was employed to study droplets’ flow behavior in continuous gas flow for various nozzle geometries. The results reveal that the nozzle expansion ratio, defined as a function of throat and exit diameters, has a significant influence on droplet velocity, followed by divergent length. Noteworthy, to correctly accelerate “low-inertia liquid microdroplets,” it was found that the optimum nozzle expansion ratio for axisymmetric convergent-divergent nozzles should be in a range of 1.5–2.5, which is different and way smaller than the recommended expansion ratio (i.e., 5–9) for CS of conventional micron-scale “metal” powders. Based on the simulation results, an optimum design of supersonic nozzle is established and prototyped for the experimental studies. Particle image velocimetry (PIV) was used to experimentally investigate the spray flow field and to validate the numerical modeling results. Moreover, coating experiments using the optimized nozzle confirmed the effective supersonic spraying of droplets containing nanoparticles, thereby showing the potential for advanced nanocoating applications.

References

1.
An
,
S.
,
Joshi
,
B.
,
Yarin
,
A. L.
,
Swihart
,
M. T.
, and
Yoon
,
S. S.
,
2020
, “
Supersonic Cold Spraying for Energy and Environmental Applications: One-Step Scalable Coating Technology for Advanced Micro- and Nanotextured Materials
,”
Adv. Mater.
,
32
(
2
), p.
1905028
.
2.
Yin
,
S.
,
Cavaliere
,
P.
,
Aldwell
,
B.
,
Jenkins
,
R.
,
Liao
,
H.
,
Li
,
W.
, and
Lupoi
,
R.
,
2018
, “
Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications
,”
Addit. Manuf.
,
21
(
April
), pp.
628
650
.
3.
Li
,
W. Y.
, and
Li
,
C. J.
,
2005
, “
Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space
,”
J. Therm. Spray Technol.
,
14
(
3
), pp.
391
396
.
4.
Li
,
W. Y.
,
Liao
,
H.
,
Douchy
,
G.
, and
Coddet
,
C.
,
2007
, “
Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation With 316L Stainless Steel Powder
,”
Mater. Des.
,
28
(
7
), pp.
2129
2137
.
5.
Li
,
W. Y.
,
Liao
,
H.
,
Wang
,
H. T.
,
Li
,
C. J.
,
Zhang
,
G.
, and
Coddet
,
C.
,
2006
, “
Optimal Design of a Convergent-Barrel Cold Spray Nozzle by Numerical Method
,”
Appl. Surf. Sci.
,
253
(
2
), pp.
708
713
.
6.
Yin
,
S.
,
Wang
,
X. F.
, and
Li
,
W. Y.
,
2011
, “
Computational Analysis of the Effect of Nozzle Cross-Section Shape on Gas Flow and Particle Acceleration in Cold Spraying
,”
Surf. Coat. Technol.
,
205
(
8–9
), pp.
2970
2977
.
7.
Varadaraajan
,
V.
, and
Mohanty
,
P.
,
2017
, “
Design and Optimization of Rectangular Cold Spray Nozzle: Radial Injection Angle, Expansion Ratio and Traverse Speed
,”
Surf. Coat. Technol.
,
316
, pp.
246
254
.
8.
Grujicic
,
M.
,
Tong
,
C.
,
DeRosset
,
W. S.
, and
Helfritch
,
D.
,
2003
, “
Flow Analysis and Nozzle-Shape Optimization for the Cold-Gas Dynamic-Spray Process
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
217
(
11
), pp.
1603
1613
.
9.
Lee
,
M. W.
,
Park
,
J. J.
,
Kim
,
D. Y.
,
Yoon
,
S. S.
,
Kim
,
H. Y.
,
Kim
,
D. H.
,
James
,
S. C.
, et al
,
2011
, “
Optimization of Supersonic Nozzle Flow for Titanium Dioxide Thin-Film Coating by Aerosol Deposition
,”
J. Aerosol Sci.
,
42
(
11
), pp.
771
780
.
10.
Sova
,
A.
,
Klinkov
,
S.
,
Kosarev
,
V.
,
Ryashin
,
N.
, and
Smurov
,
I.
,
2013
, “
Preliminary Study on Deposition of Aluminium and Copper Powders by Cold Spray Micronozzle Using Helium
,”
Surf. Coat. Technol.
,
220
, pp.
98
101
.
11.
Sova
,
A.
,
Smurov
,
I.
,
Doubenskaia
,
M.
, and
Petrovskiy
,
P.
,
2018
, “
Deposition of Aluminum Powder by Cold Spray Micronozzle
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
3745
3752
.
12.
Jen
,
T. C.
,
Li
,
L.
,
Cui
,
W.
,
Chen
,
Q.
, and
Zhang
,
X.
,
2005
, “
Numerical Investigations on Cold Gas Dynamic Spray Process With Nano- and Microsize Particles
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4384
4396
.
13.
Champagne
,
V.
, and
Helfritch
,
D.
,
2016
, “
The Unique Abilities of Cold Spray Deposition
,”
Int. Mater. Rev.
,
61
(
7
), pp.
437
455
.
14.
Akin
,
S.
,
Wu
,
P.
,
Tsai
,
J.-T.
,
Nath
,
C.
,
Chen
,
J.
, and
Jun
,
M. B.-G.
,
2021
, “
A Study on Droplets Dispersion and Deposition Characteristics Under Supersonic Spray Flow for Nanomaterial Coating Applications
,”
Surf. Coat. Technol.
,
426
, p.
127788
.
15.
Choi
,
H.
,
Lee
,
J. G.
,
Mai
,
X. D.
,
Beard
,
M. C.
,
Yoon
,
S. S.
, and
Jeong
,
S.
,
2017
, “
Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
16.
Seok Jo
,
H.
,
An
,
S.
,
Park
,
C.-W.
,
Woo
,
D.-Y.
,
Yarin
,
A. L.
, and
Yoon
,
S.
,
2019
, “
Wearable, Stretchable, Transparent All-in-One Soft Sensor Formed From Supersonically Sprayed Silver Nanowires
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40232
40242
.
17.
Harihara Sudhan
,
K.
,
Krishna Prasad
,
G.
,
Kothurkar
,
N. K.
, and
Srikrishnan
,
A. R.
,
2020
, “
Studies on Supersonic Cold Spray Deposition of Microparticles Using a Bell-Type Nozzle
,”
Surf. Coat. Technol.
,
383
(
Oct.
), p.
125244
.
18.
Grigoriev
,
S.
,
Okunkova
,
A.
,
Sova
,
A.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2015
, “
Cold Spraying: From Process Fundamentals Towards Advanced Applications
,”
Surf. Coat. Technol.
,
268
, pp.
77
84
.
19.
Wu
,
H.
,
Liu
,
S.
,
Zhang
,
Y.
, and
Liao
,
H.
,
2021
, “
New Process Implementation to Enhance Cold Spray-Based Additive Manufacturing
,”
J. Therm. Spray Technol.
,
30
(
5
), pp.
1284
1293
.
20.
ANSYS Fluent 12.1 User Guide, 2011.
21.
Sigma-Aldrich
,
2021
, “Silver, Dispersion Nanoparticles, 10 Nm Particle Size (TEM), 0.02 Mg/ML in Aqueous Buffer, Contains Sodium Citrate as Stabilizer,” Available: https://www.sigmaaldrich.com/US/en/product/aldrich/730785.
22.
“Iron Oxide (II, III), Magnetic Nanoparticles Avg. Part. Size 10 nm, 5 mg/ML H2O 1317-61-9,” Available: https://www.sigmaaldrich.com/US/en/product/aldrich/725358.
23.
Mezhericher
,
M.
,
Levy
,
A.
, and
Borde
,
I.
,
2008
, “
Droplet-Droplet Interactions in Spray Drying by Using 2D Computational Fluid Dynamic
,”
Drying Technol.
,
26
(
3
), pp.
265
282
.
24.
Chen
,
C.
, and
Zhao
,
B.
,
2010
, “
Some Questions on Dispersion of Human Exhaled Droplets in Ventilation Room: Answers From Numerical Investigation
,”
Indoor Air
,
20
(
2
), pp.
95
111
.
25.
Schmidt
,
T.
,
Assadi
,
H.
,
Gärtner
,
F.
,
Richter
,
H.
,
Stoltenhoff
,
T.
,
Kreye
,
H.
, and
Klassen
,
T.
,
2009
, “
From Particle Acceleration to Impact and Bonding in Cold Spraying
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
794
808
.
26.
Schmidt
,
T.
,
Gärtner
,
F.
,
Assadi
,
H.
, and
Kreye
,
H.
,
2006
, “
Development of a Generalized Parameter Window for Cold Spray Deposition
,”
Acta Mater.
,
54
(
3
), pp.
729
742
.
27.
Assadi
,
H.
,
Kreye
,
H.
,
Gärtner
,
F.
, and
Klassen
,
T.
,
2016
, “
Cold Spraying—A Materials Perspective
,”
Acta Mater.
,
116
, pp.
382
407
.
28.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
In-Situ Observations of Single Micro-Particle Impact Bonding
,”
Scr. Mater.
,
145
, pp.
9
13
.
29.
Yin
,
S.
,
Meyer
,
M.
,
Li
,
W.
,
Liao
,
H.
, and
Lupoi
,
R.
,
2016
, “
Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A Review
,”
J. Therm. Spray Technol.
,
25
(
5
), pp.
874
896
.
30.
Alkhimov
,
A. P.
,
Kosarev
,
V. F.
, and
Klinkov
,
S. V.
,
2001
, “
The Features of Cold Spray Nozzle Design
,”
J. Therm. Spray Technol.
,
10
(
2
), pp.
375
381
.
31.
An
,
S.
,
Bang
,
B.-H.
,
Lee
,
M. W.
, and
Yoon
,
S. S.
,
2021
, “
Review of Recent Progress in the Supersonic Cold-Spraying Technique With Solid Particles and Liquid Suspensions
,”
Exp. Fluids
,
62
(
7
), pp.
1
25
.
32.
Akin
,
S.
,
Lee
,
S.
,
Jo
,
S.
,
Ruzgar
,
D. G.
,
Subramaniam
,
K.
,
Tsai
,
J.-T.
, and
Jun
,
M. B.-G.
,
2022
, “
Cold Spray-Based Rapid and Scalable Production of Printed Flexible Electronics
,”
Addit. Manuf.
,
60
, p.
103244
.
33.
Huang
,
Q.
, and
Zhu
,
Y.
,
2019
, “
Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications
,”
Adv. Mater. Technol.
,
4
(
5
), pp.
1
41
.
34.
Tsai
,
J.-T.
,
Akin
,
S.
,
Zhou
,
F.
,
Bahr
,
D. F.
, and
Jun
,
M. B.-G.
,
2021
, “
Establishing a Cold Spray Particle Deposition Window on Polymer Substrate
,”
J. Therm. Spray Technol.
,
30
, pp.
1
12
.
35.
Özdemir
,
O. Ç.
,
Conahan
,
J. M.
, and
Müftü
,
S.
,
2020
, “
Particle Velocimetry, CFD, and the Role of Particle Sphericity in Cold Spray
,”
Coatings
,
10
(
12
), pp.
1
26
.
36.
Papyrin
,
A.
,
Kosarev
,
V.
,
Klinkov
,
S.
,
Alkhimov
,
A.
, and
Fomin
,
V. M.
,
2007
,
Cold Spray Technology
,
Elsevier Ltd.
,
The Netherlands
.
37.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flexible Printed Electron.
,
3
(
3
), p.
035002
.
38.
Jo
,
S.
,
Akin
,
S.
,
Park
,
M. S.
, and
Jun
,
M. B. G.
,
2022
, “
Selective Metallization on Glass Surface by Laser Direct Writing Combined With Supersonic Particle Deposition
,”
Manuf. Lett.
,
31
, pp.
64
68
.
39.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge, UK
.
40.
“VixOne™ Nebulizers | Westmed, Inc.,” Available: https://westmedinc.com/vixone/.
41.
Ochowiak
,
M.
,
Kasperkowiak
,
A.
,
Doligalski
,
M.
,
Sosnowski
,
T. R.
,
Matuszak
,
M.
,
Włodarczak
,
S.
,
Markowska
,
M.
,
Krupińska
,
A.
, and
Jabłczyńska
,
K.
,
2019
, “
The Thermostated Medical Jet Nebulizer: Aerosol Characteristics
,”
Int. J. Pharm.
,
567
, p.
118475
.
42.
Misik
,
O.
,
Peštálová
,
A.
,
Belka
,
M.
, and
Lízal
,
F.
,
2022
, “
Nebulizer Particle Size Distribution Measured by Various Methods
,”
EPJ Web Conf.
,
264
, p.
01023
.
43.
Mofakham
,
A. A.
, and
Ahmadi
,
G.
,
2020
, “
Improved Discrete Random Walk Stochastic Model for Simulating Particle Dispersion and Deposition in Inhomogeneous Turbulent Flows
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101401
.
44.
Jaskulski
,
M.
,
Wawrzyniak
,
P.
, and
Zbiciński
,
I.
,
2018
, “
CFD Simulations of Droplet and Particle Agglomeration in an Industrial Counter-Current Spray Dryer
,”
Adv. Powder Technol.
,
29
(
7
), pp.
1724
1733
.
45.
Francia
,
V.
,
Martín
,
L.
,
Bayly
,
A. E.
, and
Simmons
,
M. J. H.
,
2017
, “
Agglomeration During Spray Drying: Airborne Clusters or Breakage at the Walls?
,”
Chem. Eng. Sci.
,
162
, pp.
284
299
.
46.
Pattison
,
J.
,
Celotto
,
S.
,
Khan
,
A.
, and
O’Neill
,
W.
,
2008
, “
Standoff Distance and Bow Shock Phenomena in the Cold Spray Process
,”
Surf. Coat. Technol.
,
202
(
8
), pp.
1443
1454
.
You do not currently have access to this content.