Abstract

The implementation of precision machine tool thermal error compensation in edge-cloud-fog computing architecture has the potential to control the thermal error. However, the challenges faced by the successful implementation are described as follows: The data collection and transfer efficiency are low, and the control accuracy is not deficient. To address these challenges, a hardware design scheme is proposed for the high-performance intelligent gateway node based on the low-power processor architecture of ARM Cortex-A7. Moreover, a new transformer-improved-gate long short-term memory model is proposed, and then it is embedded into edge-cloud-fog computing architecture. With the implementation of gear profile grinding machine thermal error compensation in edge-cloud-fog computing architecture, the maximum values of the tooth profile tilt deviation are reduced from 17.4 μm to 5.4 μm and from 17.9 μm to 5.8 μm for the left and right tooth flanks, respectively. Moreover, the maximum values of the tooth profile deviation are reduced from 18.9 μm to 6.1 μm and from 18.2 μm to 5.8 μm for the left and right tooth flanks, respectively. Compared with the traditional collection mode, the response delay of the designed intelligent gateway in the acquisition mode is reduced by 40%.

References

1.
Zhang
,
Z.
,
Cai
,
L.
,
Cheng
,
Q.
,
Liu
,
Z.
, and
Gu
,
P.
,
2019
, “
A Geometric Error Budget Method to Improve Machining Accuracy Reliability of Multi-Axis Machine Tools
,”
J. Intell. Manuf.
,
30
(
2
), pp.
495
519
.
2.
Sun
,
T. H.
,
Tien
,
F. C.
,
Tien
,
F. C.
, and
Kuo
,
R. J.
,
2016
, “
Automated Thermal Fuse Inspection Using Machine Vision and Artificial Neural Networks
,”
J. Intell. Manuf.
,
27
(
3
), pp.
639
651
.
3.
Cao
,
H.
,
Li
,
B.
,
Li
,
Y.
,
Kang
,
T.
, and
Chen
,
X.
,
2019
, “
Model-Based Error Motion Prediction and Fit Clearance Optimization for Machine Tool Spindles
,”
Mech. Syst. Signal Process
,
133
(
1
), p.
106252
.
4.
Fu
,
G.
,
Gong
,
H.
,
Fu
,
J.
,
Gao
,
H.
, and
Deng
,
X.
,
2019
, “
Geometric Error Contribution Modeling and Sensitivity Evaluating for Each Axis of Five-Axis Machine Tools Based on POE Theory and Transforming Differential Changes Between Coordinate Frames
,”
Int. J. Mach. Tools Manuf.
,
147
(
1
), p.
103455
.
5.
Liu
,
W.
,
Kong
,
C.
,
Niu
,
Q.
,
Jiang
,
J.
, and
Zhou
,
X.
,
2020
, “
A Method of NC Machine Tools Intelligent Monitoring System in Smart Factories
,”
Rob. Comput. Integr. Manuf.
,
61
(
1
), p.
101842
.
6.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Donmez
,
M. A.
,
Knapp
,
W.
,
Härtig
,
F.
,
Wegener
,
K.
, et al
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann.
,
61
(
2
), pp.
771
791
.
7.
Bergman
,
T. L.
,
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
8.
Yang
,
H.
, and
Ni
,
J.
,
2005
, “
Adaptive Model Estimation of Machine-Tool Thermal Errors Based on Recursive Dynamic Modeling Strategy
,”
Int. J. Mach. Tools Manuf.
,
45
(
1
), pp.
1
11
.
9.
Baghban
,
A.
,
Kahani
,
M.
,
Nazari
,
M. A.
,
Ahmadi
,
M. H.
, and
Yan
,
W. M.
,
2019
, “
Sensitivity Analysis and Application of Machine Learning Methods to Predict the Heat Transfer Performance of CNT/Water Nanofluid Flows Through Coils
,”
Int. J. Heat Mass Transfer
,
128
(
1
), pp.
825
835
.
10.
Zhu
,
M.
,
Yang
,
Y.
,
Feng
,
X.
,
Du
,
Z.
, and
Yang
,
J.
,
2022
, “
Robust Modeling Method for Thermal Error of CNC Machine Tools Based on Random Forest Algorithm
,”
J. Intell. Manuf.
, pp.
1
14
.
11.
Liu
,
H.
,
Miao
,
E. M.
,
Wei
,
X. Y.
, and
Zhuang
,
X. D.
,
2017
, “
Robust Modeling Method for Thermal Error of CNC Machine Tools Based on Ridge Regression Algorithm
,”
Int. J. Mach. Tools Manuf.
,
113
(
1
), pp.
35
48
.
12.
Liang
,
Y. C.
,
Li
,
W. D.
,
Lou
,
P.
, and
Hu
,
J. M.
,
2022
, “
Thermal Error Prediction for Heavy-Duty CNC Machines Enabled by Long Short-Term Memory Networks and Fog-Cloud Architecture
,”
J. Manuf. Syst.
,
62
, pp.
950
963
.
13.
Ramesh
,
R.
,
Mannan
,
M. A.
,
Poo
,
A. N.
, and
Keerthi
,
S. S.
,
2003
, “
Thermal Error Measurement and Modelling in Machine Tools. Part II. Hybrid Bayesian Network-Support Vector Machine Model
,”
Int. J. Mach. Tools Manuf.
,
43
(
4
), pp.
405
419
.
14.
Ma
,
C.
,
Zhao
,
L.
,
Mei
,
X.
,
Shi
,
H.
, and
Yang
,
J.
,
2017
, “
Thermal Error Compensation of High-Speed Spindle System Based on a Modified BP Neural Network
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9
), pp.
3071
3085
.
15.
Yang
,
H.
, and
Ni
,
J.
,
2005
, “
Dynamic Neural Network Modeling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
455
465
.
16.
Liu
,
Z.
,
Mi
,
Y.
, and
Mao
,
Y.
,
2014
, “
Improved Real-Time Denoising Method Based on Lifting Wavelet Transform
,”
Meas. Sci. Rev.
,
14
(
3
), pp.
152
159
.
17.
Liu
,
J.
,
Ma
,
C.
,
Gui
,
H.
, and
Wang
,
S.
,
2021
, “
Thermally-Induced Error Compensation of Spindle System Based on Long Short Term Memory Neural Networks
,”
Appl. Soft Comput.
,
102
, p.
107094
.
18.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutník
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2016
, “
LSTM: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2222
2232
.
19.
Shi
,
X.
,
Chen
,
Z.
,
Wang
,
H.
,
Yeung
,
D. Y.
,
Wong
,
W. K.
, and
Woo
,
W. C.
,
2015
, “
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
,”
Adv. Neural Inf. Process. Syst.
,
1
(
1
), pp.
802
810
.
20.
Liu
,
C.
,
Zhang
,
L.
,
Niu
,
J.
,
Yao
,
R.
, and
Wu
,
C.
,
2020
, “
Intelligent Prognostics of Machining Tools Based on Adaptive Variational Mode Decomposition and Deep Learning Method With Attention Mechanism
,”
Neurocomputing
,
417
(
1
), pp.
239
254
.
21.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “
Attention Is All You Need
,”
Adv. Neural Inf. Process. Syst.
,
1
(
1
), pp.
6000
6010
.
22.
Devlin
,
J.
,
Chang
,
M. W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2018
, “
Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding
,”
NAACL-HLT
,
1
(
1
), pp.
4171
4186
.
23.
Dosovitskiy
,
A.
,
Beyer
,
L.
,
Kolesnikov
,
A.
,
Weissenborn
,
D.
,
Zhai
,
X.
,
Unterthiner
,
T.
,
Houlsby
,
N.
, et al
,
2020
, “
An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale
,”
ICLR 2021
,
1
(
1
), pp.
1
22
.
24.
Liu
,
Y.
,
Wang
,
L.
,
Wang
,
X. V.
,
Xu
,
X.
, and
Zhang
,
L.
,
2019
, “
Scheduling in Cloud Manufacturing: State-of-the-Art and Research Challenges
,”
Int. J. Prod. Res.
,
57
(
15–16
), pp.
4854
4879
.
25.
Zietsch
,
J.
,
Vogt
,
M.
,
Lee
,
B. D.
,
Herrmann
,
C.
, and
Thiede
,
S.
,
2020
, “
Enabling Smart Manufacturing Through a Systematic Planning Framework for Edge Computing
,”
CIRP J. Manuf. Sci. Technol.
,
31
(
1
), pp.
351
369
.
26.
Liu
,
S.
,
Guo
,
C.
,
Al-Turjman
,
F.
,
Muhammad
,
K.
, and
de Albuquerque
,
V. H. C.
,
2020
, “
Reliability of Response Region: A Novel Mechanism in Visual Tracking by Edge Computing for IIoT Environments
,”
Mech. Syst. Signal Process
,
138
(
1
), p.
106537
.
27.
Verma
,
A.
,
Goyal
,
A.
,
Kumara
,
S.
, and
Kurfess
,
T.
,
2021
, “
Edge-Cloud Computing Performance Benchmarking for IoT Based Machinery Vibration Monitoring
,”
Manuf. Lett.
,
27
(
1
), pp.
39
41
.
28.
Yin
,
L.
,
Luo
,
J.
, and
Luo
,
H.
,
2018
, “
Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers for Smart Manufacturing
,”
IEEE Trans. Ind. Inf.
,
14
(
10
), pp.
4712
4721
.
29.
Aazam
,
M.
,
Zeadally
,
S.
, and
Harras
,
K. A.
,
2018
, “
Deploying fog Computing in Industrial Internet of Things and Industry 4.0
,”
IEEE Trans. Ind. Inf.
,
14
(
10
), pp.
4674
4682
.
30.
Wang
,
T.
,
Zhao
,
D.
,
Cai
,
S.
,
Jia
,
W.
, and
Liu
,
A.
,
2019
, “
Bidirectional Prediction-Based Underwater Data Collection Protocol for End-Edge-Cloud Orchestrated System
,”
IEEE Trans. Ind. Inf.
,
16
(
7
), pp.
4791
4799
.
31.
Sherstinsky
,
A.
,
2020
, “
Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network
,”
Phys. D
,
404
(
1
), p.
132306
.
32.
Liu
,
J.
,
Ma
,
C.
, and
Wang
,
S.
,
2020
, “
Data-Driven Thermal Error Compensation of Linear x-Axis of Worm Gear Machines With Error Mechanism Modeling
,”
Mech. Mach. Theory
,
153
(
1
), p.
104009
.
You do not currently have access to this content.