Abstract

When planning tool orientations for 5-axis machining from the perspective of kinematics, existing works often tend to optimize the angular velocity or acceleration of the rotary axes rather than the angular jerk due to its calculation sensitivity to discretization variations, though the jerk is fundamentally tied to the tracking errors and residual vibrations of the actuators. In this paper, a study is reported on how to optimize the angular jerk of the rotary axes while comprehensively considering the kinematic constraints, thus achieving a jerk-optimal tool orientation along the tool path, with driving capacity of the rotary axes respected. In this method, the displacements of the rotary axes are continuously represented by two quintic B-spline curves, and then the angular velocity, acceleration, and jerk of the rotary axes, which are the derivatives of the displacements, can be succinctly represented as a B-spline curve. Taking advantage of the convex hull property of B-spline curve, the linear analytical representations of the kinematic constraints of the rotary axes can be successfully derived in form of control coefficient combinations. To prevent the machining interference at the same time, a greedy strategy that incorporates a process of alternately smoothing tool orientation and checking machining interference is employed. Then, the smooth displacement splines of the rotary axes can be obtained by solving a constructed quadratic programming (QP) model that minimizes the angular jerk along the tool path, while satisfying kinematic constraints and without machining interference. Moreover, to generate efficiently tool orientations for long tool paths, a piecewise planning strategy that optimizes the tool orientation from coarse to fine is developed. Finally, the conducted experiments validate the proposed method.

References

1.
Sun
,
S.
,
Sun
,
Y.
,
Xu
,
J.
, and
Lee
,
Y.-S.
,
2018
, “
Iso-Planar Feed Vector-Fields-Based Streamline Tool Path Generation for Five-Axis Compound Surface Machining With Torus-End Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071013
.
2.
Wu
,
B.
,
Liang
,
M.
,
Han
,
F.
, and
Zhang
,
Y.
,
2019
, “
Optimization of Cutter Orientation for Multi-Axis NC Machining Based on Minimum Energy Consumption of Motion Axes
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5
), pp.
1855
1867
.
3.
Zhang
,
K.
,
Yuan
,
C.-M.
,
Gao
,
X.-S.
, and
Li
,
H.
,
2012
, “
A Greedy Algorithm for Feedrate Planning of CNC Machines Along Curved Tool Paths With Confined Jerk
,”
Robot. Comput. Integr. Manuf.
,
28
(
4
), pp.
472
483
.
4.
Ma
,
J.
,
Jia
,
Z.
,
Qin
,
F.
,
Song
,
D.
,
Jiang
,
W.
, and
Chen
,
S.
,
2019
, “
A Five-Axis Dual NURBS Interpolator With Constant Speed at Feedrate-Sensitive Regions Under Axial Drive Constraints
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061002
.
5.
Jun
,
C.-S.
,
Cha
,
K.
, and
Lee
,
Y.-S.
,
2003
, “
Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method
,”
Comput. Aided Des.
,
35
(
6
), pp.
549
566
.
6.
Morishige
,
K.
,
Takeuchi
,
Y.
, and
Kase
,
K.
,
1999
, “
Tool Path Generation Using C-Space for 5-Axis Control Machining
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
144
149
.
7.
Farouki
,
R. T.
, and
Li
,
S.
,
2013
, “
Optimal Tool Orientation Control for 5-Axis CNC Milling With Ball-End Cutters
,”
Comput. Aided Geom. Des.
,
30
(
2
), pp.
226
239
.
8.
Han
,
C. Y.
,
2016
, “
Tractrix-Based Tool Orientation Control for 5-Axis CNC Machining
,”
Appl. Math. Comput.
,
272
, pp.
92
99
.
9.
Wang
,
N.
, and
Tang
,
K.
,
2007
, “
Automatic Generation of Gouge-Free and Angular-Velocity-Compliant Five-Axis Toolpath
,”
Comput. Aided Des.
,
39
(
10
), pp.
841
852
.
10.
Lauwers
,
B.
,
Dejonghe
,
P.
, and
Kruth
,
J.-P.
,
2003
, “
Optimal and Collision Free Tool Posture in Five-Axis Machining Through the Tight Integration of Tool Path Generation and Machine Simulation
,”
Comput. Aided Des.
,
35
(
5
), pp.
421
432
.
11.
Ho
,
M. C.
,
Hwang
,
Y. R.
, and
Hu
,
C. H.
,
2003
, “
Five-Axis Tool Orientation Smoothing Using Quaternion Interpolation Algorithm
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1259
1267
.
12.
Wu
,
B.
,
Liang
,
M.
,
Zhang
,
Y.
,
Luo
,
M.
, and
Tang
,
K.
,
2018
, “
Optimization of Machining Strip Width Using Effective Cutting Shape of Flat-End Cutter for Five-Axis Free-Form Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5
), pp.
2623
2633
.
13.
Chiou
,
J. C. J.
, and
Lee
,
Y. S.
,
2005
, “
Optimal Tool Orientation for Five-Axis Tool-End Machining by Swept Envelope Approach
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
810
818
.
14.
Anotaipaiboon
,
W.
, and
Makhanov
,
S. S.
,
2011
, “
Minimization of the Kinematics Error for Five-Axis Machining
,”
Comput. Aided Des.
,
43
(
12
), pp.
1740
1757
.
15.
Castagnetti
,
C.
,
Duc
,
E.
, and
Ray
,
P.
,
2008
, “
The Domain of Admissible Orientation Concept: A New Method for Five-Axis Tool Path Optimisation
,”
Comput. Aided Des.
,
40
(
9
), pp.
938
950
.
16.
Wang
,
N.
, and
Tang
,
K.
,
2008
, “
Five-Axis Tool Path Generation for a Flat-End Tool Based on Iso-Conic Partitioning
,”
Comput. Aided Des.
,
40
(
12
), pp.
1067
1079
.
17.
Hu
,
P.
, and
Tang
,
K.
,
2011
, “
Improving the Dynamics of Five-Axis Machining Through Optimization of Workpiece Setup and Tool Orientations
,”
Comput. Aided Des.
,
43
(
12
), pp.
1693
1706
.
18.
Sun
,
Y.
,
Xu
,
J.
,
Jin
,
C.
, and
Guo
,
D.
,
2016
, “
Smooth Tool Path Generation for 5-Axis Machining of Triangular Mesh Surface With Nonzero Genus
,”
Comput. Aided Des.
,
79
, pp.
60
74
.
19.
Ye
,
T.
,
Xiong
,
C.
,
Xiong
,
Y.
, and
Zhao
,
C.
,
2010
, “
Tool Orientation Optimization Considering Second Order Kinematical Performance of the Multi-Axis Machine
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051006
.
20.
Sun
,
S.
,
Sun
,
Y.
, and
Lee
,
Y.-S.
,
2019
, “
A Gouge-Free Tool Axis Reorientation Method for Kinematics Compliant Avoidance of Singularity in 5-Axis Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051010
.
21.
Plakhotnik
,
D.
, and
Lauwers
,
B.
,
2014
, “
Graph-Based Optimization of Five-Axis Machine Tool Movements by Varying Tool Orientation
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1
), pp.
307
318
.
22.
Mi
,
Z.
,
Yuan
,
C.
,
Ma
,
X.
, and
Shen
,
L.
,
2017
, “
Tool Orientation Optimization for 5-Axis Machining With C-Space Method
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5
), pp.
1243
1255
.
23.
Lavernhe
,
S.
,
Tournier
,
C.
, and
Lartigue
,
C.
,
2008
, “
Optimization of 5-Axis High-Speed Machining Using a Surface Based Approach
,”
Comput. Aided Des.
,
40
(
10–11
), pp.
1015
1023
.
24.
Lu
,
Y.
,
Wang
,
C.
,
Sui
,
J.
, and
Zheng
,
L.
,
2018
, “
Smoothing Rotary Axes Movements for Ball-End Milling Based on the Gradient-Based Differential Evolution Method
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121008
.
25.
Langeron
,
J. M.
,
Duc
,
E.
,
Lartigue
,
C.
, and
Bourdet
,
P.
,
2004
, “
A New Format for 5-Axis Tool Path Computation, Using Bspline Curves
,”
Comput. Aided Des.
,
36
(
12
), pp.
1219
1229
.
26.
Zhang
,
Y.
,
Xu
,
R.
,
Li
,
X.
,
Cheng
,
X.
,
Zheng
,
G.
, and
Meng
,
J.
,
2020
, “
A Tool Path Generation Method Based on Smooth Machine Rotary Angle and Tilt Angle in Five-Axis Surface Machining With Torus Cutters
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9
), pp.
4261
4271
.
27.
Yuen
,
A.
,
Zhang
,
K.
, and
Altintas
,
Y.
,
2013
, “
Smooth Trajectory Generation for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
11
19
.
28.
Huang
,
K.
,
Zhang
,
Z.
,
Gong
,
H.
,
Li
,
Z.
,
Fang
,
F.
, and
Wang
,
D.
,
2017
, “
Constructing Smooth Tool Orientation Field Based on Radial Basis Function for 5-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1
), pp.
1369
1379
.
29.
Sun
,
Y.
,
Bao
,
Y.
,
Kang
,
K.
, and
Guo
,
D.
,
2013
, “
A Cutter Orientation Modification Method for Five-Axis Ball-End Machining With Kinematic Constraints
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9
), pp.
2863
2874
.
30.
Xu
,
J.
,
Zhang
,
D.
, and
Sun
,
Y.
,
2019
, “
Kinematics Performance Oriented Smoothing Method to Plan Tool Orientations for 5-Axis Ball-End CNC Machining
,”
Int. J. Mech. Sci.
,
157
, pp.
293
303
.
31.
Yang
,
J.
,
Li
,
D.
,
Ye
,
C.
, and
Ding
,
H.
,
2020
, “
An Analytical C3 Continuous Tool Path Corner Smoothing Algorithm for 6R Robot Manipulator
,”
Robot. Comput. Integr. Manuf.
,
64
, p.
101947
.
32.
Sun
,
H.
,
Yang
,
J.
,
Li
,
D.
, and
Ding
,
H.
,
2021
, “
An On-Line Tool Path Smoothing Algorithm for 6R Robot Manipulator With Geometric and Dynamic Constraints
,”
Sci. China Technol. Sci.
,
64
(
9
), pp.
1907
1919
.
33.
Wang
,
Y.
,
Xu
,
J.
, and
Sun
,
Y.
,
2021
, “
Tool Orientation Adjustment for Improving the Kinematics Performance of 5-Axis Ball-End Machining Via CPM Method.
,”
Robot. Comput. Integr. Manuf.
,
68
, p.
102070
.
34.
Erkorkmaz
,
K.
,
Chen
,
Q.-G. C.
,
Zhao
,
M.-Y.
,
Beudaert
,
X.
, and
Gao
,
X.-S.
,
2017
, “
Linear Programming and Windowing Based Feedrate Optimization for Spline Toolpaths
,”
CIRP Ann.
,
66
(
1
), pp.
393
396
.
35.
Sun
,
Y.
,
Chen
,
M.
,
Jia
,
J.
,
Lee
,
Y.-S.
, and
Guo
,
D.
,
2019
, “
Jerk-Limited Feedrate Scheduling and Optimization for Five-Axis Machining Using New Piecewise Linear Programming Approach
,”
Sci. China Technol. Sci.
,
62
(
7
), pp.
1067
1081
.
36.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2008
, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,”
Robot. Comput. Integr. Manuf.
,
24
(
3
), pp.
415
426
.
37.
Dai
,
C.
,
Lefebvre
,
S.
,
Yu
,
K.-M.
,
Geraedts
,
J. M.
, and
Wang
,
C. C.
,
2020
, “
Planning Jerk-Optimized Trajectory With Discrete Time Constraints for Redundant Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
1711
1724
.
38.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer Science & Business Media
,
Berlin
.
39.
Hu
,
P.
,
Tang
,
K.
, and
Lee
,
C.-H.
,
2013
, “
Global Obstacle Avoidance and Minimum Workpiece Setups in Five-Axis Machining
,”
Comput. Aided Des.
,
45
(
10
), pp.
1222
1237
.
40.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2012
, “
Feedrate Interpolation With Axis Jerk Constraints on 5-Axis NURBS and G1 Tool Path
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
73
82
.
41.
Dam
,
E. B.
,
Koch
,
M.
, and
Lillholm
,
M.
,
1998
,
Quaternions, Interpolation and Animation
,
Technical Report
,
University of Copenhagen, Denmark
.
You do not currently have access to this content.