Abstract

This article aims to investigate the characteristic microstructure-based failure mechanisms observed during the fracture cutting of age-varying bovine cortical bone. To this end, orthogonal cutting experiments are performed on cortical femoral bones harvested from three distinct bovine age groups, viz., young (∼1 month), mature (16–18 months), and old (∼30 months). Fracture cutting is induced at a depth of cut of 70 μm and a cutting velocity of 800 mm/min by using two distinct tool rake angles of +20 deg and 0 deg. The nanoindentation studies and porosity analysis show key differences between microstructural constituents, as a function of age. The high-speed camera images taken during the fracture cutting process provide insight into six dominant microstructure-specific failure mechanisms. These include primary osteonal fracture, woven fracture, and lamellar fracture observed in the plexiform region; and cement line fracture (i.e., osteon debonding), secondary osteonal fracture, and interstitial matrix fracture observed in the haversian regions. In addition to the conventionally reported specific cutting energy metric, a new metric of resultant cutting force per unit crack area and surface integrity are employed here. All cutting responses are seen to be sensitive to age-related microstructural variations and the tool rake angle. In addition to requiring more cutting force, the neutral tool rake angle also results in notable subsurface damage.

References

1.
Kemers
,
H. M.
,
Visscher
,
S. L.
,
Moriarty
,
J. P.
,
Reinalda
,
M. S.
,
Kremers
,
W. K.
,
Naessens
,
J. M.
, and
Lewallen
,
D. G.
,
2013
, “
Determinants of Direct Medical Costs in Primary and Revision Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
471
(
1
), pp.
206
214
.
2.
Haenle
,
M.
,
Skripitz
,
C.
,
Mittelmeier
,
W.
, and
Skripitz
,
R.
,
2012
, “
Clinical Study: Economic Impact of Infected Total Knee Arthroplasty
,”
Sci. World J.
,
6
, pp.
1
6
.
3.
Kayode
,
O. D.
,
Molony
,
D. C.
,
Walls
,
R. J.
,
Bashir
,
S. P.
, and
Mulhall
,
K. J.
,
2010
, “
Increasing Financial Burden of Revision Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
, pp.
945
948
.
4.
Piscitelli
,
P.
,
Iolascon
,
G.
,
Tanna
,
D.
,
Bizzi
,
E.
,
Chitano
,
G.
,
Argentiero
,
A.
,
Neglia
,
C.
, et al
,
2012
, “
Socioeconomic Burden of Total Joint Arthroplasty for Symptomatic Hip and Knee Osteoarthritis in the Italian Population: A 5-Year Analysis Based on Hospitalization Records
,”
Arthritis Care Res.
,
64
(
9
), pp.
1320
1327
.
5.
Patil
,
N.
,
Lee
,
K.
,
Huddleston
,
J. I.
,
Harris
,
A. H. S.
, and
Goodman
,
S. B.
,
2010
, “
Aseptic Versus Septic Revision Total Knee Arthroplasty: Patient Satisfaction, Outcome and Quality of Life Improvement
,”
The Knee
,
17
(
3
), pp.
200
203
.
6.
Cheung
,
A.
,
Goh
,
S. K.
,
Tang
,
A.
, and
Keng
,
T. B.
,
2008
, “
Complications of Total Knee Arthroplasty
,”
Curr. Orthopaed.
,
22
(
4
), pp.
274
283
.
7.
Dall
,
T. M.
,
Gallo
,
P.
,
Koenig
,
L.
,
Gu
,
Q.
, and
Ruiz
,
D.
,
2013
, “
Modeling the Indirect Economic Implications of Musculoskeletal Disorders and Treatment
,”
Cost Effectiveness Resour. Alloc.
,
11
(
1
), pp.
1
14
.
8.
Porucznik
,
M. A.
,
2013
, “
Orthopaedic Surgery Helps Keep U.S. Economy Going
,”
AAOS Now
,
7
(
7
), https://www.aaos.org/aaosnow/2013/may/cover/cover2/, Accessed February 5, 2023.
9.
McCalden
,
R. W.
,
McGeough
,
J. A.
,
Barker
,
M. B.
, and
Court-Brown
,
C. M.
,
1993
, “
Age-Related Changes in the Tensile Properties of Cortical Bone. The Relative Importance of Changes in Porosity, Mineralization, and Microstructure
,”
J. Bone Jt. Surg.
,
75
(
8
), pp.
1193
1205
.
10.
Rho
,
J. Y.
,
Zioupos
,
P.
,
Currey
,
J. D.
, and
Pharr
,
G. M.
,
2002
, “
Microstructural Elasticity and Regional Heterogeneity in Human Femoral Bone of Various Ages Examined by Nano-Indentation
,”
J. Biomech.
35
(
2
), pp.
189
198
.
11.
Barrera
,
O. A.
,
Haider
,
H.
, and
Garvin
,
K. L.
,
2008
, “
Towards a Standard in Assessment of Bone Cutting for Total Knee Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
222
(
1
), pp.
63
74
.
12.
Hofmann
,
S.
,
Seitlinger
,
G.
,
Djahani
,
O.
, and
Pietsch
,
M.
,
2011
, “
The Painful Knee After TKA: A Diagnostic Algorithm for Failure Analysis
,”
Knee Surgery, Sport. Traumatol. Arthrosc.
,
19
(
9
), pp.
1442
1452
.
13.
Krause
,
W. R.
,
1987
, “
Orthogonal Bone Cutting: Saw Design and Operating Characteristics
,”
ASME J. Biomech. Eng.
,
109
(
3
), pp.
263
271
.
14.
Yeager
,
C.
,
Nazari
,
A.
, and
Arola
,
D.
,
2008
, “
Machining of Cortical Bone: Surface Texture, Surface Integrity and Cutting Forces
,”
Mach. Sci. Technol.
,
12
(
1
), pp.
100
118
.
15.
Bai
,
W.
,
Shu
,
L.
,
Sun
,
R.
,
Xu
,
J.
,
Silberschmidt
,
V. V.
, and
Sugita
,
N.
,
2020
, “
Mechanism of Material Removal in Orthogonal Cutting of Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103618
.
16.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
41
55
.
17.
Wiggins
,
K. L.
, and
Malkin
,
S.
,
1978
, “
Orthogonal Machining of Bone
,”
ASME J. Biomech. Eng.
,
100
(
3
), pp.
122
130
.
18.
Manilay
,
Z.
,
Novitskaya
,
E.
,
Sadovnikov
,
E.
, and
McKittrick
,
J.
,
2013
, “
A Comparative Study of Young and Mature Bovine Cortical Bone
,”
Acta Biomater.
,
9
(
2
), pp.
5280
5288
.
19.
Crowder
,
C.
, and
Stout
,
S.
,
2011
,
Bone Histology: An Anthropological Perspective
,
CRC Press
,
FL
.
20.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
21.
Conward
,
M.
, and
Samuel
,
J.
,
2021
, “
A Microstructure-Based Mechanistic Model for Bone Sawing: Part 1—Cutting Force Predictions
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121009
.
22.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.
23.
Aerssens
,
J.
,
Boonen
,
S.
,
Lowet
,
G.
, and
Dequeker
,
J.
,
1998
, “
Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research 1
,”
Endocrinology
,
139
(
2
), pp.
663
670
.
24.
Liu
,
X. S.
,
Cohen
,
A.
,
Shane
,
E.
,
Yin
,
P. T.
,
Stein
,
E. M.
,
Rogers
,
H.
,
Kokolus
,
S. L.
,
McMahon
,
D. J.
,
Lappe
,
J. M.
,
Recker
,
R. R.
,
Lang
,
T.
, and
Guo
,
X. E.
,
2010
, “
Bone Density, Geometry, Microstructure, and Stiffness: Relationships Between Peripheral and Central Skeletal Sites Assessed by DXA, HR-pQCT, and cQCT in Premenopausal Women
,”
J. Bone Miner. Res.
,
25
(
10
), pp.
2229
2238
.
25.
Mayya
,
A.
,
Banerjee
,
A.
, and
Rajesh
,
R.
,
2013
, “
Mammalian Cortical Bone in Tension is Non-Haversian
,”
Sci. Rep.
,
3
(
1
), p. 2533.
26.
Akhtar
,
R.
,
Daymond
,
M. R.
,
Almer
,
J. D.
, and
Mummery
,
P. M.
,
2011
, “
Load Transfer in Bovine Plexiform Bone Determined by Synchrotron x-Ray Diffraction
,”
J. Mater. Res.
,
23
(
2
), pp.
543
550
.
27.
Budyn
,
E.
,
Jonvaux
,
J.
,
Funfschilling
,
C.
, and
Hoc
,
T.
,
2012
, “
Bovine Cortical Bone Stiffness and Local Strain Are Affected by Mineralization and Morphology
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011008
.
28.
Wang
,
X. J.
,
Chen
,
X. B.
,
Hodgson
,
P. D.
, and
Wen
,
C. E.
,
2006
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bovine Bone Measured by Nanoindentation
,”
Trans. Nonferrous Met. Soc. China
,
16
(
Suppl
), pp.
s744
s748
.
29.
Budyn
,
E.
, and
Hoc
,
T.
,
2010
, “
Analysis of Micro Fracture in Human Haversian Cortical Bone Under Transverse Tension Using Extended Physical Imaging
,”
Int. J. Numer. Methods Eng.
,
82
(
8
), pp.
940
965
.
30.
Jonvaux
,
J.
,
Hoc
,
T.
, and
Budyn
,
É
,
2012
, “
Analysis of Micro Fracture in Human Haversian Cortical Bone Under Compression
,”
Int. J. Numer. Method. Biomed. Eng.
,
28
(
9
), pp.
974
998
.
31.
Montalbano
,
T.
, and
Feng
,
G.
,
2011
, “
Nanoindentation Characterization of the Cement Lines in Ovine and Bovine Femurs
,”
J. Mater. Res.
,
26
(
8
), pp.
1036
1041
.
32.
Palacio-Mancheno
,
P. E.
,
Larriera
,
A. I.
,
Doty
,
S. B.
,
Cardoso
,
L.
, and
Fritton
,
S. P.
,
2014
, “
3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution µCT: Effects of Resolution and Threshold Method
,”
J. Bone Miner. Res.
,
29
(
1
), pp.
142
150
.
33.
Rasband
,
W. S.
,
1997–2018
,
ImageJ
,
U. S. National Institutes of Health
,
Bethesda, MD
, https://imagej.nih.gov/ij/, Accessed February 5, 2023.
34.
Currey
,
J. D.
,
Brear
,
K.
, and
Zioupos
,
P.
,
1996
, “
The Effects of Ageing and Changes in Mineral Content in Degrading the Toughness of Human Femora
,”
J. Biomech.
,
29
(
2
), pp.
257
260
.
35.
Zioupos
,
P.
, and
Currey
,
J. D.
,
1998
, “
Changes in the Stiffness, Strength, and Toughness of Human Cortical Bone With Age
,”
Bone
,
22
(
1
), pp.
57
66
.
36.
Singleton
,
R. C.
,
Pharr
,
G. M.
, and
Nyman
,
J. S.
,
2021
, “
Increased Tissue-Level Storage Modulus and Hardness With Age in Male Cortical Bone and Its Association With Decreased Fracture Toughness
,”
Bone
,
148
, p.
115949
.
37.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
168
175
.
38.
Jacobs
,
C. H.
,
Pope
,
M. H.
,
Berry
,
J. T.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.
39.
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2009
, “
Specifications for Machining the Bovine Cortical Bone in Relation to Its Microstructure
,”
J. Biomech.
,
42
(
16
), pp.
2826
2829
.
40.
Skedros
,
J. G.
,
Holmes
,
J. L.
,
Vajda
,
E. G.
, and
Bloebaum
,
R. O. Y. D.
,
2005
, “
Cement Lines of Secondary Osteons in Human Bone Are Not Mineral-Deficient: New Data in a Historical Perspective
,”
Anat. Rec.
,
286A
(
1
), pp.
781
803
.
41.
Li
,
S.
,
Abdel-Wahab
,
A.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Fracture Process in Cortical Bone: X-FEM Analysis of Microstructured Models
,”
Int. J. Fract.
,
184
(
1–2
), pp.
43
55
.
42.
Currey
,
J. D.
,
2012
, “
The Structure and Mechanics of Bone
,”
J. Mater. Sci.
,
47
(
1
), pp.
41
54
.
43.
Li
,
S.
,
Abdel-Wahab
,
A.
, and
Silberschmidt
,
V. V.
,
2013
, “
Analysis of Fracture Processes in Cortical Bone Tissue
,”
Eng. Fract. Mech.
,
110
, pp.
448
458
.
44.
Ritchie
,
R. O.
,
Kinney
,
J. H.
,
Kruzic
,
J. J.
, and
Nalla
,
R. K.
,
2005
, “
A Fracture Mechanics and Mechanistic Approach to the Failure of Cortical Bone
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
4
), pp.
345
371
.
45.
Cook
,
N. H.
,
1966
,
Manufacturing Analysis
,
Addison-Wesley Pub. Co.
,
MA
.
46.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2014
,
Manufacturing Processes for Engineering Materials
, 5th ed.,
Pearson
,
New York
.
47.
Plaskos
,
C.
,
Hodgson
,
A. J.
, and
Cinquin
,
P.
,
2003
, “Modelling and Optimization of Bone-Cutting Forces in Orthopaedic Surgery,”
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003
,
R. E.
Ellis
, and
T. M.
Peters
, eds.,
Springer
,
New York
, pp.
254
261
.
48.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
.
49.
Hogan
,
H. A.
,
1992
, “
Micromechanics Modeling of Haversian Cortical Bone Properties
,”
J. Biomech.
,
25
(
5
), pp.
549
556
.
50.
Morgan
,
E. F.
,
Barnes
,
G. L.
, and
Einhorn
,
T. A.
,
2013
, “The Bone Organ System: Form and Function,”
Osteoporosis
,
R.
Marcus
,
D.
Dempster
,
D.
Feldman
and
J.
Cauley
, eds., 4th ed.,
Elsevier
,
New York
, pp.
3
20
.
51.
Potukuchi
,
S. K. S.
,
2021
, “
Cutting Models for Bio-Composites (Publication No. 28414563)
,”
Doctoral dissertation, ProQuest Dissertations and Thesis database
,
Rensselaer Polytechnic Institute
,
Detroit, MI
.
52.
de Margerie
,
E.
,
Cubo
,
J.
, and
Castanet
,
J.
,
2002
, “
Bone Typology and Growth Rate: Testing and Quantifying ‘Amprino’s Rule’ in the Mallard (Anas Platyrhynchos)
,”
Compt. Rend. Biol.
,
325
(
3
), pp.
221
230
.
53.
An
,
Y. H.
, and
Martin
,
K. L.
,
2003
,
Handbook of Histology Methods for Bone and Cartilage
,
Springer
,
New York
.
54.
Lipson
,
S. F.
, and
Katz
,
J. L.
,
1984
, “
The Relationship Between Elastic Properties and Microstructure of Bovine Cortical Bone
,”
J. Biomech.
,
17
(
4
), pp.
237
240
.
55.
Carter
,
D. R.
, and
Spengler
,
D. M.
,
1978
, “
Mechanical Properties and Composition of Cortical Bone
,”
Clin. Orthop. Relat. Res.
,
135
, pp.
192
217
.
56.
Martin
,
R. B.
, and
Burr
,
D. B.
,
1982
, “
A Hypothetical Mechanism for the Stimulation of Osteonal Remodelling by Fatigue Damage
,”
J. Biomech.
,
15
(
3
), pp.
137
139
.
57.
Katsamenis
,
O. L.
,
Chong
,
H. M. H.
,
Andriotis
,
O. G.
, and
Thurner
,
P. J.
,
2013
, “
Load-Bearing in Cortical Bone Microstructure: Selective Stiffening and Heterogeneous Strain Distribution at the Lamellar Level
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
152
165
.
58.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2012
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(
3
), pp.
141
149
.
59.
Mishra
,
R.
,
Conward
,
M.
, and
Samuel
,
J.
,
2021
, “
A Microstructure-Based Mechanistic Model for Bone Sawing: Part 1—Acoustic Energy Rate Predictions
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121010
.
You do not currently have access to this content.