Abstract

Additive manufacturing (AM) simulations offer an alternative to expensive AM experiments to study the effects of processing conditions on granular microstructures. Existing AM simulations lack support from reliable validation techniques. The stochastic nature and spatial heterogeneity of microstructures make it difficult to validate the simulated microstructures against experimentally obtained images through statistical measures such as average grain size. Another challenge is the lack of reliable and automated methods to calibrate the model parameters, which are unknown and difficult to measure directly from experiments. To overcome these two challenges, we first present a novel metric to quantify the difference between granular microstructures. Then, using this metric in conjunction with Bayesian optimization, we present a framework that can be used to reliably and efficiently calibrate the model parameters. We employ this framework to first calibrate the substrate microstructure simulation and then the laser scan microstructure simulation for Inconel 625. Results show that the framework allows successful calibration of the model parameters in just a small number of simulations.

References

1.
Ivanova
,
O.
,
Williams
,
C.
, and
Campbell
,
T.
,
2013
, “
Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges
,”
Rapid Prototyp. J.
,
19
(
5
), pp.
353
364
.
2.
DebRoy
,
T.
,
Mukherjee
,
T.
,
Wei
,
H. L.
,
Elmer
,
J. W.
, and
Milewski
,
J. O.
,
2021
, “
Metallurgy, Mechanistic Models and Machine Learning in Metal Printing
,”
Nat. Rev. Mater.
,
6
(
1
), pp.
48
68
.
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
.
4.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
.
5.
Babu
,
S. S.
,
Raghavan
,
N.
,
Raplee
,
J.
,
Foster
,
S. J.
,
Frederick
,
C.
,
Haines
,
M.
,
Dinwiddie
,
R.
, et al
,
2018
, “
Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification
,”
Metall. Mater. Trans. A
,
49
(
9
), pp.
3764
3780
.
6.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
7.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase-Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
163
194
.
8.
Chadwick
,
A. F.
, and
Voorhees
,
P. W.
,
2021
, “
The Development of Grain Structure During Additive Manufacturing
,”
Acta Mater.
,
211
, p.
116862
.
9.
Shi
,
Y.
,
Zhang
,
Y.
,
Xu
,
Q.
,
Liu
,
B.
,
Cui
,
H.
, and
Mi
,
G.
,
2012
, “
Modeling and Simulation of Dendrite Growth in Solidification of Al-Si-Mg Ternary Alloys
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
33
(
1
), p.
012112
.
10.
Lian
,
Y.
,
Lin
,
S.
,
Yan
,
W.
,
Liu
,
W. K.
, and
Wagner
,
G. J.
,
2018
, “
A Parallelized Three-Dimensional Cellular Automaton Model for Grain Growth During Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
543
558
.
11.
Rappaz
,
M.
, and
Gandin
,
C. A.
,
1993
, “
Probabilistic Modelling of Microstructure Formation in Solidification Processes
,”
Acta Metall. Mater.
,
41
(
2
), pp.
345
360
.
12.
Rodgers
,
T. M.
,
Madison
,
J. D.
, and
Tikare
,
V.
,
2017
, “
Simulation of Metal Additive Manufacturing Microstructures Using Kinetic Monte Carlo
,”
Comput. Mater. Sci.
,
135
, pp.
78
89
.
13.
Tonks
,
M. R.
, and
Aagesen
,
L. K.
,
2019
, “
The Phase Field Method: Mesoscale Simulation Aiding Material Discovery
,”
Annu. Rev. Mater. Res.
,
49
(
1
), pp.
79
102
.
14.
Rodgers
,
T. M.
,
Bishop
,
J. E.
, and
Madison
,
J. D.
,
2018
, “
Direct Numerical Simulation of Mechanical Response in Synthetic Additively Manufactured Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
26
(
5
), p.
055010
.
15.
Lian
,
Y.
,
Gan
,
Z.
,
Yu
,
C.
,
Kats
,
D.
,
Liu
,
W. K.
, and
Wagner
,
G. J.
,
2019
, “
A Cellular Automaton Finite Volume Method for Microstructure Evolution During Additive Manufacturing
,”
Mater. Des.
,
169
, p.
107672
.
16.
Ennings
,
B. R. J.
,
Arslow
,
K. P.
,
Thomson
,
J. J.
, and
Ottewill
,
R. H.
,
1988
, “
Particle Size Measurement: The Equivalent Spherical Diameter
,”
Proc. R. Soc. A
,
419
(
1856
), pp.
137
149
.
17.
Hovington
,
P.
,
Pinard
,
P. T.
,
Lagacé
,
M.
,
Rodrigue
,
L.
,
Gauvin
,
R.
, and
Trudeau
,
M. L.
,
2009
, “
Towards a More Comprehensive Microstructural Analysis of Zr-2.5Nb Pressure Tubing Using Image Analysis and Electron Backscattered Diffraction (EBSD)
,”
J. Nucl. Mater.
,
393
(
1
), pp.
162
174
.
18.
Latypov
,
M. I.
,
Kühbach
,
M.
,
Beyerlein
,
I. J.
,
Stinville
,
J. C.
,
Toth
,
L. S.
,
Pollock
,
T. M.
, and
Kalidindi
,
S. R.
,
2018
, “
Application of Chord Length Distributions and Principal Component Analysis for Quantification and Representation of Diverse Polycrystalline Microstructures
,”
Mater. Charact.
,
145
, pp.
671
685
.
19.
Fromm
,
B. S.
,
Adams
,
B. L.
,
Ahmadi
,
S.
, and
Knezevic
,
M.
,
2009
, “
Grain Size and Orientation Distributions: Application to Yielding of α-Titanium
,”
Acta Mater.
,
57
(
8
), pp.
2339
2348
.
20.
Roberts
,
A. P.
, and
Torquato
,
S.
,
1999
, “
Chord-Distribution Functions of Three-Dimensional Random Media: Approximate First-Passage Times of Gaussian Processes
,”
Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top.
,
59
(
5
), pp.
4953
4963
.
21.
Turner
,
D. M.
,
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2016
, “
Efficient Computation of the Angularly Resolved Chord Length Distributions and Lineal Path Functions in Large Microstructure Datasets
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
7
), p.
075002
.
22.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2017
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
23.
Burke
,
E. K.
, and
Kendall
,
G.
,
2014
,
Search Methodologies: Introductory Tutorials in Optimization and Decision. Support Techniques
, 2nd ed.,
Springer
,
New York
, pp.
97
125
.
24.
Pelikan
,
M.
,
Goldberg
,
D.
, and
Cantu-Paz
,
E.
,
1999
, “
BOA: The Bayesian Optimization Algorithm
,”
Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99
,
Orlando, FL
,
July 13–17
.
25.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Statist. Soc. B
,
63
(
3
), pp.
425
464
.
26.
Tapia
,
G.
,
Johnson
,
L.
,
Franco
,
B.
,
Karayagiz
,
K.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Bayesian Calibration and Uncertainty Quantification for a Physics-Based Precipitation Model of Nickel-Titanium Shape-Memory Alloys
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071002
.
27.
Kuhn
,
J.
,
Spitz
,
J.
,
Sonnweber-Ribic
,
P.
,
Schneider
,
M.
, and
Böhlke
,
T.
,
2021
, “
Identifying Material Parameters in Crystal Plasticity by Bayesian Optimization
,”
Optim. Eng.
,
23
, pp.
1489
1523
.
28.
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2016
, “
Model Inversion Via Multi-fidelity Bayesian Optimization: A New Paradigm for Parameter Estimation in Haemodynamics, and Beyond
,”
J. R. Soc. Interface
,
13
(
118
), p.
20151107
.
29.
Lipton
,
J.
,
Glicksman
,
M. E.
, and
Kurz
,
W.
,
1984
, “
Dendritic Growth Into Undercooled Alloy Metals
,”
Mater. Sci. Eng.
,
65
(
1
), pp.
57
63
.
30.
Stoudt
,
M. R.
,
Williams
,
M. E.
,
Levine
,
L. E.
,
Creuziger
,
A.
,
Young
,
S. A.
,
Heigel
,
J. C.
,
Lane
,
B. M.
, and
Phan
,
T. Q.
,
2020
, “
Location-Specific Microstructure Characterization Within IN625 Additive Manufacturing Benchmark Test Artifacts
,”
Integr. Mater. Manuf. Innov.
,
9
(
1
), pp.
54
69
.
31.
Gan
,
Z.
,
Lian
,
Y.
,
Lin
,
S. E.
,
Jones
,
K. K.
,
Liu
,
W. K.
, and
Wagner
,
G. J.
,
2019
, “
Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625
,”
Integr. Mater. Manuf. Innov.
,
8
(
2
), pp.
178
193
.
32.
Fátima Vaz
,
M.
, and
Fortes
,
M. A.
,
1988
, “
Grain Size Distribution: The Lognormal and the Gamma Distribution Functions
,”
Scr. Metall.
,
22
(
1
), pp.
35
40
.
33.
Sinclair
,
K.
,
2002
,
Linear Algebra Guide.
34.
Kullback
,
S.
,
1997
,
Information Theory and Statistics
,
Courier Corporation
,
North Chelmsford, MA
.
35.
Rubner
,
Y.
,
Tomasi
,
C.
, and
Guibas
,
L. J.
,
2000
, “
Earth Mover’s Distance as a Metric for Image Retrieval
,”
Int. J. Comput. Vision
,
40
(
2
), pp.
99
121
.
36.
Sharma
,
G.
,
Abbas
,
S. H.
, and
Gupta
,
V. K.
,
2015
, “
Solving Multi-Objective Transportation Problem to Reduce Transportation Cost and Time
,”
J. J. Adv. Math.
,
11
(
1
), pp.
3908
3912
.
37.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
38.
Seeger
,
M.
,
2004
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
,
14
(
2
), pp.
69
106
.
39.
Wang
,
H.
,
Van Stein
,
B.
,
Emmerich
,
M.
, and
Bäck
,
T.
,
2017
, “
A New Acquisition Function for Bayesian Optimization Based on the Moment-Generating Function
,”
2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2017
,
Banff, AB, Canada
,
Oct. 5–8
, pp.
507
512
.
40.
Rai
,
A.
,
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
A Coupled Cellular Automaton–Lattice Boltzmann Model for Grain Structure Simulation During Additive Manufacturing
,”
Comput. Mater. Sci.
,
124
, pp.
37
48
.
41.
Amir Reza Ansari Dezfoli
,
Y.-L. L.
, and
R
,
M. M.
,
2021
, “
Microstructure and Elements Concentration of Inconel 713LC
,”
Crystals
,
11
, p.
1065
.
42.
Rolchigo
,
M.
,
Stump
,
B.
,
Belak
,
J.
, and
Plotkowski
,
A.
,
2020
, “
Sparse Thermal Data for Cellular Automata Modeling of Grain Structure in Additive Manufacturing
,”
Modell. Simul. Mater. Sci. Eng.
,
28
(
6
), p.
065003
.
43.
Zhao
,
Y.
,
Li
,
K.
,
Gargani
,
M.
, and
Xiong
,
W.
,
2020
, “
A Comparative Analysis of Inconel 718 Made by Additive Manufacturing and Suction Casting: Microstructure Evolution in Homogenization
,”
Addit. Manuf.
,
36
, pp.
17
22
.
You do not currently have access to this content.