Abstract

Multi-laser powder bed fusion (M-LPBF) systems are garnering increased attention in metal additive manufacturing as they promise increased productivity and part size without sacrificing feature resolution or mechanical properties. However, M-LPBF introduces unique problems related to the interaction of multiple moving heat sources not observed in single laser systems, possibly leading to unexpected flaws and other process anomalies. Careful process modeling, planning, and monitoring are required to fully exploit M-LPBF. We present a novel in situ sensing and machine learning-based flaw detection for M-LPBF. Specifically, we consider a configuration where on-axis multi-spectral sensors are integrated and synchronized with each of the three lasers on a 3D Systems DMP Factory 500 printer. Each multi-spectral sensor monitors spectral emissions at two material-dependent wavelengths. The time series data generated from the multiple multi-spectral sensors are converted into a rasterized image per layer to be fed into a supervised deep learning (DL)-based semantic segmentation pipeline. To discriminate nominal process variations from anomalies, we explore a novel framework to incorporate context into the DL model which includes factors such as laser scan direction, processing parameters, and multi-laser proximity. We demonstrate our framework on in situ monitoring data collected during a build of carefully selected specimens seeded with surrogate lack of fusion flaws. Post-build X-ray computed tomography data are registered to the in situ data to generate ground truth labels for training and validation of the DL model.

References

1.
Snow
,
Z.
,
Nassar
,
A. R.
, and
Reutzel
,
E. W.
,
2020
, “
Invited Review Article: Review of the Formation and Impact of Flaws in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101457
.
2.
Wong
,
H.
,
Dawson
,
K.
,
Ravi
,
G.
,
Howlett
,
L.
,
Jones
,
R.
, and
Sutcliffe
,
C.
,
2019
, “
Multi-laser Powder Bed Fusion Benchmarking—Initial Trials With Inconel 625
,”
Int. J. Adv. Manuf. Technol.
,
105
(
7
), pp.
2891
2906
.
3.
Renishaw
,
2020
, “
Multi-laser Processing Strategies for High-Integrity Component Manufacture
,” www.renishaw.com/resourcecentre/en
4.
Tenbrock
,
C.
,
Kelliger
,
T.
,
Praetzsch
,
N.
,
Ronge
,
M.
,
Jauer
,
L.
, and
Schleifenbaum
,
J. H.
,
2021
, “
Effect of Laser-Plume Interaction on Part Quality in Multi-scanner Laser Powder Bed Fusion
,”
Addit. Manuf.
,
38
, p.
101810
.
5.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Quality Part Production Via Multi-laser Additive Manufacturing
,”
Manuf. Lett.
,
13
, pp.
15
20
.
6.
Khosravani
,
M. R.
, and
Reinicke
,
T.
,
2020
, “
On the Use of X-Ray Computed Tomography in Assessment of 3d-Printed Components
,”
J. Nondestruct. Eval.
,
39
(
4
), pp.
1
17
.
7.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
8.
Grasso
,
M. L. G.
,
Remani
,
A.
,
Dickins
,
A.
,
Colosimo
,
B. M.
, and
Leach
,
R. K.
,
2021
, “
In-Situ Measurement and Monitoring Methods for Metal Powder Bed Fusion—An Updated Review
,”
Meas. Sci. Technol.
,
32
, p.
112001
.
9.
Irwin
,
J. E.
,
Wang
,
Q.
,
Michaleris
,
P. P.
,
Nassar
,
A. R.
,
Ren
,
Y.
, and
Stutzman
,
C. B.
,
2021
, “
Iterative Simulation-Based Techniques for Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
46
, p.
102078
.
10.
Surana
,
A.
, and
Reddy
,
K.
,
2022
, “
Guided Policy Search Based Control of a High Dimensional Advanced Manufacturing Process
,”
IEEE Conference on Control Technology and Applications (CCTA)
,
Trieste, Italy
,
Aug. 22–25
, pp.
1415
1420
.
11.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder Bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
.
12.
Gobert
,
C.
,
Reutzel
,
E. W.
,
Petrich
,
J.
,
Nassar
,
A. R.
, and
Phoha
,
S.
,
2018
, “
Application of Supervised Machine Learning for Defect Detection During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging.
,”
Addit. Manuf.
,
21
, pp.
517
528
.
13.
Scime
,
L.
,
Siddel
,
D.
,
Baird
,
S.
, and
Paquit
,
V.
,
2020
, “
Layer-Wise Anomaly Detection and Classification for Powder Bed Additive Manufacturing Processes: A Machine-Agnostic Algorithm for Real-Time Pixel-Wise Semantic Segmentation
,”
Addit. Manuf.
,
36
, p.
101453
.
14.
Snow
,
Z.
,
Diehl
,
B.
,
Reutzel
,
E. W.
, and
Nassar
,
A.
,
2021
, “
Toward In-Situ Flaw Detection in Laser Powder Bed Fusion Additive Manufacturing Through Layerwise Imagery and Machine Learning
,”
J. Manuf. Syst.
,
59
, pp.
12
26
.
15.
Baumgartl
,
H.
,
Tomas
,
J.
,
Buettner
,
R.
, and
Merkel
,
M.
,
2020
, “
A Deep Learning-Based Model for Defect Detection in Laser-Powder Bed Fusion Using In-Situ Thermographic Monitoring
,”
Prog. Addit. Manuf.
,
5
(
3
), pp.
277
285
.
16.
Montazeri
,
M.
,
Nassar
,
A. R.
,
Dunbar
,
A. J.
, and
Rao
,
P.
,
2020
, “
In-Process Monitoring of Porosity in Additive Manufacturing Using Optical Emission Spectroscopy
,”
IISE Trans.
,
52
(
5
), pp.
500
515
.
17.
Jayasinghe
,
S.
,
Paoletti
,
P.
,
Sutcliffe
,
C.
,
Dardis
,
J.
,
Jones
,
N.
, and
Green
,
P. L.
,
2022
, “
Automatic Quality Assessments of Laser Powder Bed Fusion Builds From Photodiode Sensor Measurements
,”
Prog. Addit. Manuf.
,
7
(
2
), pp.
143
160
.
18.
Taherkhani
,
K.
,
Sheydaeian
,
E.
,
Eischer
,
C.
,
Otto
,
M.
, and
Toyserkani
,
E.
,
2021
, “
Development of a Defect-Detection Platform Using Photodiode Signals Collected From the Melt Pool of Laser Powder-Bed Fusion
,”
Addit. Manuf.
,
46
, p.
102152
.
19.
Dunbar
,
A. J.
, and
Nassar
,
A. R.
,
2018
, “
Assessment of Optical Emission Analysis for In-process Monitoring of Powder Bed Fusion Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
13
(
1
), pp.
14
19
.
20.
Kramida
,
A.
,
Ralchenko
,
Y.
,
Reader
,
J.
, and
Team
,
N. A.
,
2022
, “
NIST Atomic Spectra Database (ver. 5.9)
,” [Online],
National Institute of Standards and Technology
,
Gaithersburg, MD
, https://physics.nist.gov/asd
21.
Carter
,
W.
,
Tucker
,
M.
,
Mahony
,
M.
,
Toledano
,
D.
,
Butler
,
R.
,
Roychowdhury
,
S.
,
Nassar
,
A. R.
,
Corbin
,
D. J.
,
Benedict
,
M. D.
, and
Hicks
,
A. S.
,
2019
, “
An Open-Architecture Multi-laser Research Platform for Acceleration of Large-Scale Additive Manufacturing (ALSAM)
,”
2019 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
,
University of Texas at Austin
.
22.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
23.
Gaikwad
,
A.
,
Giera
,
B.
,
Guss
,
G. M.
,
Forien
,
J.-B.
,
Matthews
,
M. J.
, and
Rao
,
P.
,
2020
, “
Heterogeneous Sensing and Scientific Machine Learning for Quality Assurance in Laser Powder Bed Fusion—A Single-Track Study
,”
Addit. Manuf.
,
36
, p.
101659
.
24.
Willard
,
J.
,
Jia
,
X.
,
Xu
,
S.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2022
, “
Integrating Physics-Based Modeling With Machine Learning: A Survey
,”
ACM Computing Surveys
,
55
(
4
), pp.
1
37
.
25.
Promoppatum
,
P.
,
Yao
,
S.-C.
,
Pistorius
,
P. C.
, and
Rollett
,
A. D.
,
2017
, “
A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion
,”
Engineering
,
3
(
5
), pp.
685
694
.
26.
Hekmatjou
,
H.
,
Zeng
,
Z.
,
Shen
,
J.
,
Oliveira
,
J. P.
, and
Naffakh-Moosavy
,
H.
,
2020
, “
A Comparative Study of Analytical Rosenthal, Finite Element, and Experimental Approaches in Laser Welding of Aa5456 Alloy
,”
Metals
,
10
(
4
), p.
436
.
27.
Imani Shahabad
,
S.
,
Karimi
,
G.
, and
Toyserkani
,
E.
,
2021
, “
An Extended Rosenthal’s Model for Laser Powder-Bed Fusion Additive Manufacturing: Energy Auditing of Thermal Boundary Conditions
,”
Lasers Manuf. Mater. Process.
,
8
(
3
), pp.
288
311
.
28.
Minaee
,
S.
,
Boykov
,
Y. Y.
,
Porikli
,
F.
,
Plaza
,
A. J.
,
Kehtarnavaz
,
N.
, and
Terzopoulos
,
D.
,
2021
,
“Image Segmentation Using Deep Learning: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
7
), pp.
3523
3542
.
29.
Badrinarayanan
,
V.
,
Kendall
,
A.
, and
Cipolla
,
R.
,
2017
, “
Segnet: A Deep Convolutional Encoder–Decoder Architecture for Image Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
12
), pp.
2481
2495
.
30.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
,
Munich, Germany
,
Oct. 5–9
,
Springer
, LNCS, Vol. 9351, pp.
234
241
.
31.
Nassar
,
A. R.
,
Gundermann
,
M. A.
,
Reutzel
,
E. W.
,
Guerrier
,
P.
,
Krane
,
M. H.
, and
Weldon
,
M. J.
,
2019
, “
Formation Processes for Large Ejecta and Interactions With Melt Pool Formation in Powder Bed Fusion Additive Manufacturing
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
32.
Darvish
,
K.
,
Chen
,
Z.
, and
Pasang
,
T.
,
2016
, “
Reducing Lack of Fusion During Selective Laser Melting of Cocrmo Alloy: Effect of Laser Power on Geometrical Features of Tracks
,”
Mater. Des.
,
112
, pp.
357
366
.
You do not currently have access to this content.