Abstract

This paper studied the effects of two welding modes, i.e., keyhole penetration and full penetration, on laser welding of two zinc-coated steel stack-ups of the same total sheet thickness but different sheet thickness combinations. The effects of welding modes on keyhole and spatter behavior were studied. It was found that keyhole penetration welding led to little spatter and mass loss for a thick-gage stack-up of the same top and bottom sheet thickness (two 1.5 mm zinc-coated steel sheets, viz., Stack-up S). This was confirmed by numerically calculated low Zout values which indicate a low potential of spatter due to zinc outgassing insufficiency. For a stack-up of thin top and thick bottom sheet combination (1.1 mm/1.9 mm, viz., Stack-up D), full penetration mode is more preferred generating less spatter than the keyhole penetration mode. This was attributed to an enlarged keyhole size at the faying interface in the full penetration mode and the relatively thinner top sheet (1.1 mm thick) compared to the bottom sheet (1.9 mm thick). It was confirmed by the low average and maximum values of Zout. In summary, to reduce the spatter in laser welding of zinc-coated steel, the keyhole penetration mode welding is preferred for the stack-up with the top and bottom sheets of similar thickness, and the full penetration mode is more suitable for the stack-up having a much thinner top sheet than the bottom sheet.

References

1.
Sinha
,
A. K.
, and
Anand
,
A.
,
2021
, “
Development of an Alternative for Corrosive Resistant Galvanized Steel Compatible for Laser Welding
,”
Mater. Today: Proc.
,
46
(
19
), pp.
9561
9563
.
2.
Zhang
,
Y.
,
Li
,
Q.
,
Xu
,
L.
, and
Duan
,
L.
,
2015
, “
A Mechanistic Study on the Inhibition of Zinc Behavior During Laser Welding of Galvanized Steel
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011011
.
3.
Razmpoosh
,
M. H.
,
Macwan
,
A.
,
Biro
,
E.
,
Chen
,
D. L.
,
Peng
,
Y.
,
Goodwin
,
F.
, and
Zhou
,
Y.
,
2018
, “
Liquid Metal Embrittlement in Laser Beam Welding of Zn-Coated 22MnB5 Steel
,”
Mater. Des.
,
155
, pp.
375
383
.
4.
Sinha
,
A. K.
,
Kim
,
D. Y.
, and
Ceglarek
,
D.
,
2013
, “
Correlation Analysis of the Variation of Weld Seam and Tensile Strength in Laser Welding of Galvanized Steel
,”
Opt. Lasers Eng.
,
51
(
10
), pp.
1143
1152
.
5.
Mei
,
L.
,
Chen
,
G.
,
Jin
,
X.
,
Zhang
,
Y.
, and
Wu
,
Q.
,
2009
, “
Research on Laser Welding of High-Strength Galvanized Automobile Steel Sheets
,”
Opt. Lasers Eng.
,
47
(
11
), pp.
1117
1124
.
6.
Kim
,
C. H.
,
Ahn
,
Y. N.
, and
Kim
,
J. H.
,
2011
, “
CO2 Laser-Micro Plasma Arc Hybrid Welding for Galvanized Steel Sheets
,”
Trans. Nonferrous Met. Soc. China
,
21
, pp.
s47
s53
.
7.
Zhao
,
Y.
,
Zhang
,
Y.
,
Hu
,
W.
, and
Lai
,
X.
,
2012
, “
Optimization of Laser Welding Thin-Gage Galvanized Steel Via Response Surface Methodology
,”
Opt. Lasers Eng.
,
50
(
9
), pp.
1267
1273
.
8.
Yilbas
,
B. S.
, and
Akhtar
,
S.
,
2013
, “
Laser Welding of AISI 316 Steel: Microstructural and Stress Analysis
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031018
. doi.org/10.1115/1.4024155
9.
Shin
,
Y. C.
,
Wu
,
B.
,
Lei
,
S.
,
Cheng
,
G. J.
, and
Lawrence Yao
,
Y.
,
2020
, “
Overview of Laser Applications in Manufacturing and Materials Processing in Recent Years
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110818
.
10.
Imhoff
,
R.
,
Behler
,
K.
,
Gatzweiler
,
W.
, and
Beyer
,
E.
,
1988
, “
Laser Beam Welding in Car Body Making
,”
IFS Conferences
,
Toronto, ON
.
11.
Graham
,
M. P.
,
Hirak
,
D. M.
,
Kerr
,
H. W.
, and
Weckman
,
D. C.
,
1996
, “
Nd: YAG Laser Beam Welding of Coated Steels Using a Modified Lap Joint Geometry
,”
Weld. J.-Incl. Weld. Res. Suppl.
,
75
(
5
), p.
162s
.
12.
Chen
,
W.
,
Ackerson
,
P.
, and
Molian
,
P.
,
2009
, “
CO2 Laser Welding of Galvanized Steel Sheets Using Vent Holes
,”
Mater. Des.
,
30
(
2
), pp.
245
251
.
13.
Gu
,
H.
,
2010
, “
Laser Lap Welding of Zinc Coated Steel Sheet With Laser-Dimple Technology
,”
J. Laser Appl.
,
22
(
3
), pp.
87
91
.
14.
Kielwasser
,
M.
,
Fabbro
,
R.
,
Petring
,
D.
, and
Poprawe
,
R.
,
1998
, “
Process Behaviour During Nd: YAG Pulsed Laser and CO2-CW Laser Welding of Zinc Coated Steel
,”
ECLAT: European Conference on Laser Treatment of Materials
,
Hannover
, Sept.
22–23,
pp.
251
257
.
15.
Yang
,
S.
,
Wang
,
J.
,
Carlson
,
B. E.
, and
Zhang
,
J.
,
2013
, “
Vacuum-Assisted Laser Welding of Zinc-Coated Steels in a Gap-Free Lap Joint Configuration
,”
Weld. J.
,
92
(
7
), pp.
197
204
.
16.
Chen
,
Z.
,
Yang
,
S.
,
Wang
,
C.
,
Hu
,
X.
,
Shao
,
X.
, and
Wang
,
J.
,
2014
, “
A Study of Fiber Laser Welding of Galvanized Steel Using a Suction Method
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1456
1465
.
17.
Iqbal
,
S.
,
Gualini
,
M. M.
, and
ur Rehman
,
A.
,
2010
, “
Dual Beam Method for Laser Welding of Galvanized Steel: Experimentation and Prospects
,”
Opt. Laser Technol.
,
42
(
1
), pp.
93
98
.
18.
Ma
,
J.
,
Kong
,
F.
,
Carlson
,
B.
, and
Kovacevic
,
R.
,
2013
, “
Two-Pass Laser Welding of Galvanized High-Strength Dual-Phase Steel for a Zero-Gap Lap Joint Configuration
,”
J. Mater. Process. Technol.
,
213
(
3
), pp.
495
507
.
19.
Xie
,
J.
, and
Denney
,
P.
,
2001
, “
Galvanized Steel Joined With Lasers
,”
Weld. J.
,
80
(
6
), pp.
59
61
.
20.
Berend
,
O.
,
Haferkamp
,
H.
,
Meier
,
O.
, and
Engelbrecht
,
L.
,
2005
, “
High-Frequency Beam Oscillating to Increase the Process Stability During Laser Welding With High Melt Pool Dynamics
,”
International Congress on Applications of Lasers & Electro-Optics
, Vol. 2005, No. 1, p.
2206
,
Laser Institute of America
.
21.
Matsusaka
,
S.
,
Uezono
,
T.
,
Tsumura
,
T.
,
Tanaka
,
M.
, and
Watanabe
,
T.
,
2008
,
Materials Science Forum
, Vol.
580
,
Trans Tech Publications Ltd.
,
Switzerland
, pp.
355
358
.
22.
Milberg
,
J.
, and
Trautmann
,
A.
,
2009
, “
Defect-Free Joining of Zinc-Coated Steels by Bifocal Hybrid Laser Welding
,”
Prod. Eng.
,
3
(
1
), pp.
9
15
.
23.
Pieters
,
R. R. G. M.
, and
Richardson
,
I. M.
,
2005
, “
Laser Welding of Zinc Coated Steel in Overlap Configuration With Zero Gap
,”
Sci. Technol. Weld. Joining
,
10
(
2
), pp.
142
144
.
24.
Kim
,
J.
,
Oh
,
S.
, and
Ki
,
H.
,
2016
, “
Effect of Keyhole Geometry and Dynamics in Zero-Gap Laser Welding of Zinc-Coated Steel Sheets
,”
J. Mater. Process. Technol.
,
232
, pp.
131
141
.
25.
Kägeler
,
C.
, and
Schmidt
,
M.
,
2010
, “
Frequency-Based Analysis of Weld Pool Dynamics and Keyhole Oscillations at Laser Beam Welding of Galvanized Steel Sheets
,”
Phys. Procedia
,
5
, pp.
447
453
.
26.
Pan
,
Y.
, and
Richardson
,
I. M.
,
2011
, “
Keyhole Behavior During Laser Welding of Zinc-Coated Steel
,”
J. Phys. D: Appl. Phys.
,
44
(
4
), p.
045502
.
27.
Kim
,
C.
,
Choi
,
W.
,
Kim
,
J.
, and
Rhee
,
S.
,
2008
, “
Relationship Between the Weldability and the Process Parameters for Laser-TIG Hybrid Welding of Galvanized Steel Sheets
,”
Mater. Trans.
,
49
(
1
), pp.
179
186
.
28.
Kim
,
Y.
,
2015
, “
A BIW Structure Research of Light Weight Vehicle With High Stiffness by Steel
,” SAE Technical Paper
No. 2015-01-0061
.
29.
Wan
,
Z.
,
Wang
,
H. P.
,
Li
,
J.
,
Solomon
,
J.
,
Zhu
,
Y.
, and
Carlson
,
B.
,
2021
, “
Novel Measures for Spatter Prediction in Laser Welding of Thin-Gage Zinc-Coated Steel
,”
Int. J. Heat Mass Transfer
,
167
, p.
120830
.
30.
Mohamadizadeh
,
A.
,
Biro
,
E.
,
Worswick
,
M.
,
Zhou
,
N.
,
Malcolm
,
S.
,
Yau
,
C.
,
Jiao
,
Z.
, et al
,
2019
, “
Spot Weld Strength Modeling and Processing Maps for Hot-Stamping Steels
,”
Weld J.
,
98
(
8
), pp.
241
249
.
31.
Beutl
,
M.
,
Pottlacher
,
G.
, and
Jäger
,
H.
,
1994
, “
Thermophysical Properties of Liquid Iron
,”
Int. J. Thermophys.
,
15
(
6
), pp.
1323
1331
.
32.
Chen
,
G.
,
Mei
,
L.
,
Zhang
,
M.
,
Zhang
,
Y.
, and
Wang
,
Z.
,
2013
, “
Research on Key Influence Factors of Laser Overlap Welding of Automobile Body Galvanized Steel
,”
Opt. Laser Technol.
,
45
, pp.
726
733
.
You do not currently have access to this content.