Abstract

With the development and gradual maturity of additive manufacturing (AM) over the years, AM has reached a stage where implementation into a conventional production system becomes possible. With AM suitable for small volumes of highly customized production, there are various ways of implementing AM in a conventional production line. The aim of this paper is to present a strategic design approach to implementing AM with conventional manufacturing in a complementary manner for parallel processing of production orders of large quantities in a make-to-stock environment. By assuming that a single machine in conventional manufacturing can be operated using AM, splitting of production orders is allowed. Therefore, production can be conducted by both conventional and AM processes simultaneously, with the latter being able to produce various make-to-stock parts in a single build. A genetic algorithm with a scheduling and rule-based heuristic for part allocation on the build plate of AM process is used to solve a multi-objective implementation problem of AM with conventional manufacturing, with cost, scheduling, and sustainability being the considered performance measures. By obtaining a knee-point solution using varying numbers of population size and generation number, an experiment involving an industry case study of implementing the fused deposition modeling (FDM) process with injection molding process shows the greatest impact, i.e., increase, in cost. Except for material efficiency, improvements are shown in scheduling and carbon footprint objectives.

References

1.
Kocovic
,
P.
,
2017
,
3D Printing and Its Impact on the Production of Fully Functional Components—Emerging Research and Opportunities
,
IGI Global
,
Hershey, PA
.
2.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Clean. Prod.
,
137
, pp.
1573
1587
.
3.
Mukherjee
,
T.
,
Zuback
,
J. S.
,
De
,
A.
, and
DebRoy
,
T.
,
2016
, “
Printability of Alloys for Additive Manufacturing
,”
Sci. Rep.
,
6
, p.
19717
.
4.
Ning
,
F.
,
Cong
,
W.
,
Qiu
,
J.
,
Wei
,
J.
, and
Wang
,
S.
,
2015
, “
Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling
,”
Compos. B. Eng.
,
80
, pp.
369
378
.
5.
Achillas
,
C.
,
Aidonis
,
D.
,
Iakovou
,
E.
,
Thymianidis
,
M.
, and
Tzetzis
,
D.
,
2015
, “
A Methodological Framework for the Inclusion of Modern Additive Manufacturing Into the Production Portfolio of a Focused Factory
,”
J. Manuf. Syst.
,
37
(
1
), pp.
328
339
.
6.
Huang
,
S. H.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
, pp.
1191
1203
.
7.
Skinner
,
W.
,
1974
, “The Focused Factory,” https://hbr.org/1974/05/the-focused-factory, Accessed March 23, 2021.
8.
“Make-To-Stock,” Last Modified January 15, 2019, https://www.apics-anaheim.com/dictionary/make-to-stock, Accessed March 23, 2021.
9.
Mahmood
,
M. A.
,
Chioibasu
,
D.
,
Rehman
,
A. U.
,
Mihai
,
S.
, and
Popescu
,
A. C.
,
2022
, “
Post-Processing Techniques to Enhance the Quality of Metallic Parts Produced by Additive Manufacturing
,”
Metals
,
12
(
1
), p.
77
.
10.
Kellens
,
K.
,
Baumers
,
M.
,
Gutowski
,
T. G.
,
Flanagan
,
W.
,
Lifset
,
R.
, and
Duflou
,
J. R.
,
2017
, “
Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S49
S68
.
11.
Costabile
,
G.
,
Fera
,
M.
,
Fruggiero
,
F.
,
Lambiase
,
A.
, and
Pham
,
D.
,
2017
, “
Cost Models of Additive Manufacturing: A Literature Review
,”
Int. J. Ind. Eng. Comput.
,
8
(
2
), pp.
263
283
.
12.
Zhang
,
Y.
,
Gupta
,
R. K.
, and
Bernard
,
A.
,
2016
, “
Two-Dimensional Placement Optimization for Multi-parts Production in Additive Manufacturing
,”
Robot. Comput.-Integr. Manuf.
,
38
, pp.
102
117
.
13.
Mohamed
,
O. A.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2015
, “
Optimization of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects
,”
Adv. Manuf.
,
3
, pp.
42
53
.
14.
Peng
,
T.
,
2019
, “Research Framework of Sustainability in Additive Manufacturing: A Case of Fused Deposition Modeling,”
Innovations in Manufacturing for Sustainability
,
K.
Gupta
, ed.,
Springer
,
Cham
, pp.
99
123
.
15.
Lingam
,
R.
,
Bansal
,
A.
,
Prakash
,
O.
, and
Venkata Reddy
,
N.
,
2018
, “
Mechanics-Based Integrated Product and Process Design for Incremental Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021016
.
16.
Mircheski
,
I.
,
Pop-Iliev
,
R.
, and
Kandikjan
,
T.
,
2016
, “
A Method for Improving the Process and Cost of Nondestructive Disassembly
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121701
.
17.
Balu Nellippallil
,
A.
,
Rangaraj
,
V.
,
Gautham
,
B. P.
,
Kumar Singh
,
A.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
.
18.
Suh
,
E. S.
, and
Kott
,
G.
,
2010
, “
Reconfigurable Parallel Printing System Design for Field Performance and Service Improvement
,”
ASME J. Mech. Des.
,
132
(
3
), p.
034505
.
19.
Busachi
,
A.
,
Erkoyuncu
,
J.
,
Colegrove
,
P.
,
Martina
,
F.
,
Watts
,
C.
, and
Drake
,
R.
,
2017
, “
A Review of Additive Manufacturing Technology and Cost Estimation Techniques for the Defence Sector
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
117
128
.
20.
Staubus
,
G. J.
,
1971
,
Activity Costing and Input-Output Accounting
,
R. D. Irwin
,
Homewood, IL
.
21.
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2016
, “
A Cost-Driven Design Methodology for Additive Manufactured Variable Platforms in Product Families
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041701
.
22.
Ulu
,
E.
,
Huang
,
R.
,
Burak Kara
,
L.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061701
.
23.
Cunningham
,
C. R.
,
Wikshåland
,
S.
,
Xu
,
F.
,
Kemakolam
,
N.
,
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2017
, “
Cost Modelling and Sensitivity Analysis of Wire and Arc Additive Manufacturing
,”
Proc. Manuf.
,
11
, pp.
650
657
.
24.
Bennell
,
J. A.
, and
Oliveira
,
J. F.
,
2008
, “
The Geometry of Nesting Problems: A Tutorial
,”
Eur. J. Oper. Res.
,
184
(
2
), pp.
397
415
.
25.
Cherguia
,
A.
,
Hadj-Hamou
,
K.
, and
Vignat
,
F.
,
2018
, “
Production Scheduling and Nesting in Additive Manufacturing
,”
Comput. Ind. Eng.
,
126
, pp.
292
301
.
26.
Dvorak
,
F.
,
Micali
,
M.
, and
Mathieug
,
M.
,
2018
, “
Planning and Scheduling in Additive Manufacturing
,”
Intel. Artif.
,
21
(
62
), pp.
40
52
.
27.
Zhang
,
J.
,
Yao
,
X.
, and
Li
,
Y.
,
2020
, “
Improved Evolutionary Algorithm for Parallel Batch Processing Machine Scheduling in Additive Manufacturing
,”
Int. J. Prod. Res.
,
58
(
8
), pp.
2263
2282
.
28.
Khalid
,
M.
, and
Peng
,
Q.
,
2021
, “
Investigation of Printing Parameters of Additive Manufacturing Process for Sustainability Using Design of Experiments
,”
ASME J. Mech. Des.
,
143
(
3
), p.
032001
.
29.
Alizadeh
,
M.
,
Noroozi Esfahani
,
M.
,
Tian
,
W.
, and
Ma
,
J.
,
2020
, “
Data-Driven Energy Efficiency and Part Geometric Accuracy Modeling and Optimization of Green Fused Filament Fabrication Processes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041701
.
30.
Altekin
,
F. T.
, and
Bukchin
,
Y.
,
2022
, “
A Multi-objective Optimization Approach for Exploring the Cost and Makespan Trade-Off in Additive Manufacturing
,”
Eur. J. Oper. Res.
,
301
(
1
), pp.
235
253
.
31.
Asadollahi-Yazdi
,
E.
,
Gardan
,
J.
, and
Lafon
,
P.
,
2018
, “
Multi-objective Optimization of Additive Manufacturing Process
,”
IFAC-Pap. Online
,
51
(
11
), pp.
152
157
.
32.
Ransikarbum
,
K.
,
Pitakaso
,
R.
, and
Kim
,
N.
,
2020
, “
A Decision-Support Model for Additive Manufacturing Scheduling Using an Integrative Analytic Hierarchy Process and Multi-objective Optimization
,”
Appl. Sci.
,
10
(
15
), p.
5159
.
33.
Gen
,
M.
,
2016
, “
Keynote Speech in the 46th International Conference on Computers and Industrial Engineering 2016 (CIE46)
,”
Recent Advances in Hybrid Meta-Heuristics for Stochastic Scheduling Problems
,
Oct. 29–31
,
Tianjin, China
.
34.
Rabiee
,
M.
,
Zandiehb
,
M.
, and
Ramezani
,
P.
,
2012
, “
Bi-Objective Partial Flexible Job Shop Scheduling Problem: NSGA-II, NRGA, MOGA and PAES Approaches
,”
Int. J. Prod. Res.
,
50
(
24
), pp.
7327
7342
.
35.
Yuan
,
M.
,
Li
,
Y.
,
Zhang
,
L.
, and
Pei
,
F.
,
2021
, “
Research on Intelligent Workshop Resource Scheduling Method Based on Improved NSGA-II Algorithm
,”
Robot. Comput.-Integr. Manuf.
,
71
, p.
102141
.
36.
Sun
,
X.
,
Wang
,
Y.
,
Kang
,
H.
,
Shen
,
Y.
,
Chen
,
Q.
, and
Wang
,
D.
,
2021
, “
Modified Multi-crossover Operator NSGA-III for Solving Low Carbon Flexible Job Shop Scheduling Problem
,”
Processes
,
9
(
1
), p.
62
.
37.
Tan
,
W.
,
Yuan
,
X.
,
Wang
,
J.
, and
Zhang
,
X.
,
2021
, “
A Fatigue-Conscious Dual Resource Constrained Flexible Job Shop Scheduling Problem by Enhanced NSGA-II: An Application From Casting Workshop
,”
Comput. Ind. Eng.
,
160
, p.
107557
.
38.
Ashby
,
M. F.
,
Shercliff
,
H.
, and
Cebon
,
D.
,
2014
,
Materials: Engineering, Science, Processing and Design
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
39.
Chua
,
P. C.
,
Moon
,
S. K.
, and
Ng
,
Y. T.
,
2020
, “
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 9: 40th Computers and Information in Engineering Conference (CIE)
,”
Multi-objective Implementation of Additive Manufacturing in Make-to-Stock Production
,
Virtual
, p.
V009T09A059
.
40.
Framinan
,
J. M.
,
Leisten
,
R.
, and
García
,
R. R.
,
2014
,
Manufacturing Scheduling Systems: An Integrated View on Models, Methods and Tools
.
Springer
,
London
.
41.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I. S.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
.
42.
Gaussin
,
M.
,
Hu
,
G.
,
Abolghasem
,
S.
,
Basu
,
S.
,
Shankar
,
M. R.
, and
Bidanda
,
B.
,
2013
, “
Assessing the Environmental Footprint of Manufactured Products: A Survey of Current Literature
,”
Int. J. Prod. Econ.
,
146
(
2
), pp.
515
523
.
43.
Seada
,
H.
,
Deb
,
K.
,
2018
, “Non-Dominated Sorting Based Multi/Many-Objective Optimization: Two Decades of Research and Application,”
Multi-objective Optimization
,
J.
Mandal
, ed.,
Springer
,
Singapore
, pp.
1
24
.
44.
Kolonko
,
M.
,
1999
, “
Some New Results on Simulated Annealing Applied to the Job Shop Scheduling Problem
,”
Eur. J. Oper. Res.
,
113
(
1
), pp.
123
136
.
45.
Mastrolilli
,
M.
, and
Gambardella
,
L. M.
,
2000
, “
Effective Neighbourhood Functions for the Flexible Job Shop Problem
,”
J. Schedul.
,
3
(
1
), pp.
3
20
.
46.
Tay
,
J. C.
, and
Ho
,
N. B.
,
2008
, “
Evolving Dispatching Rules Using Genetic Programming for Solving Multi-Objective Flexible Job-Shop Problems
,”
Comput. Ind. Eng.
,
54
(
3
), pp.
453
473
.
47.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
48.
Zhang
,
X.
,
Tian
,
Y.
, and
Jin
,
Y.
,
2015
, “
A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization
,”
IEEE Trans. Evol. Comput.
,
19
(
6
), pp.
761
776
.
You do not currently have access to this content.