Abstract

This paper introduces a new control method for web tension control on a complex roll-to-roll winding machine used in battery production. A traditional web tension control method cannot perform well enough under high winding speed: the parameter tuning process is time-consuming, the disturbance rejection performance is not satisfying, and the control performance is not stable. A hybrid control method is proposed, and it is easy to be implemented on common programming platform for commercial winding machines with an easy tuning process, while providing superior control performance to the traditional control method. The system modeling used in the control method is much simpler than the modeling in most of the tension control researches, providing better feasibility for industrial application.

References

1.
Park
,
D.-W.
,
Cañas
,
N. A.
,
Wagner
,
N.
, and
Friedrich
,
K. A.
,
2016
, “
Novel Solvent-Free Direct Coating Process for Battery Electrodes and Their Electrochemical Performance
,”
J. Power Sources
,
306
, pp.
758
763
.
2.
Branca
,
C.
,
Pagilla
,
P.
, and
Reid
,
K.
,
2009
, “
Modeling and Identification of the Source of Oscillations in Web Tension
,”
International Conference on Web Handling
,
Stillwater, OK
,
June 24–26
.
3.
Branca
,
C.
,
Pagilla
,
P. R.
, and
Reid
,
K. N.
,
2013
, “
Governing Equations for Web Tension and Web Velocity in the Presence of Nonideal Rollers
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
1
), p.
011018
.
4.
Okada
,
K.
, and
Sakamoto
,
T.
,
1998
, “
An Adaptive Fuzzy Control for Web Tension Control System
,”
Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, IECON’98 (Cat. No. 98CH36200)
,
Aachen, Germany
,
Aug. 31–Sept. 4
, Vol. 3, IEEE, pp.
1762
1767
.
5.
Deng
,
L.
,
Suo
,
H.
, and
Ren
,
H.
,
2021
, “
Research on Tension Control System of Winding Machine Based on Fuzzy PID Algorithm
,”
2021 40th Chinese Control Conference (CCC)
,
Shanghai, China
,
July 26–28
, IEEE, pp.
2442
2447
.
6.
Pagilla
,
P. R.
,
Siraskar
,
N. B.
, and
Dwivedula
,
R. V.
,
2006
, “
Decentralized Control of Web Processing Lines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
1
), pp.
106
117
.
7.
Hou
,
H.
,
Nian
,
X.
,
Xu
,
S.
,
Sun
,
M.
, and
Xiong
,
H.
,
2017
, “
Robust Decentralized Control for Large-Scale Web-Winding Systems: A Linear Matrix Inequality Approach
,”
Trans. Inst. Meas. Control
,
39
(
7
), pp.
953
964
.
8.
Hwang
,
H.
,
Lee
,
J.
,
Eum
,
S.
, and
Nam
,
K.
,
2019
, “
Kalman-Filter-Based Tension Control Design for Industrial Roll-to-Roll System
,”
Algorithms
,
12
(
4
), p.
86
.
9.
Raul
,
P. R.
, and
Pagilla
,
P. R.
,
2015
, “
Design and Implementation of Adaptive PI Control Schemes for Web Tension Control in Roll-to-Roll (R2R) Manufacturing
,”
ISA Trans.
,
56
, pp.
276
287
.
10.
Kang
,
H.
, and
Shin
,
K.-H.
,
2018
, “
Precise Tension Control of a Dancer With a Reduced-Order Observer for Roll-to-Roll Manufacturing Systems
,”
Mech. Mach. Theory
,
122
, pp.
75
85
.
11.
Ebler
,
N. A.
,
Arnason
,
R.
,
Michaelis
,
G.
, and
D’Sa
,
N.
,
1993
, “
Tension Control: Dancer Rolls Or Load Cells
,”
IEEE Trans. Ind. Appl.
,
29
(
4
), pp.
727
739
.
12.
Liu
,
Y.
,
Fang
,
Q.
, and
Ke
,
Y.
,
2020
, “
Modeling of Tension Control System With Passive Dancer Roll for Automated Fiber Placement
,”
Math. Probl. Eng.
,
2020
, p.
9839341
.
13.
Kadu
,
C.
,
Khandekar
,
A.
, and
Patil
,
C.
,
2018
, “
Design of Sliding Mode Controller With Proportional Integral Sliding Surface for Robust Regulation and Tracking of Process Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
9
), p.
091004
.
14.
Jabbar
,
K. A.
, and
Pagilla
,
P. R.
,
2018
, “
Modeling and Analysis of Web Span Tension Dynamics Considering Thermal and Viscoelastic Effects in Roll-to-Roll Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051005
.
15.
Jeftenic
,
B. I.
, and
Bebic
,
M. Z.
,
2009
, “
Realization of Rewinder With a Reduced Number of Sensors
,”
IEEE Trans. Ind. Electron.
,
57
(
8
), pp.
2797
2806
.
16.
Shtessel
,
Y.
,
Edwards
,
C.
,
Fridman
,
L.
, and
Levant
,
A.
,
2014
,
Sliding Mode Control and Observation
, Vol.
10
,
Springer
,
Berlin/Heidelberg, Germany
.
17.
Edwards
,
C.
, and
Spurgeon
,
S.
,
1998
,
Sliding Mode Control: Theory and Applications
,
CRC Press
,
Boca Raton, FL
.
18.
Perruquetti
,
W.
, and
Barbot
,
J. P.
,
2002
,
Sliding Mode Control in Engineering
, Vol.
11
,
Marcel Dekker
,
New York
.
19.
Guldner
,
J.
, and
Utkin
,
V.
,
2000
, “
The Chattering Problem in Sliding Mode Systems
,”
Proceeding of 14th International Symposium of Mathematical Theory of Networks and Systems (MTNS)
,
Perpignan, France
,
June 19–23
.
20.
Li
,
H.
,
Zhihong
,
M.
, and
Jiayin
,
W.
,
2002
, “
Variable Universe Adaptive Fuzzy Control on the Quadruple Inverted Pendulum
,”
Sci. China Ser. E: Technol. Sci.
,
45
, pp.
213
224
.
21.
Li
,
H.
,
1999
, “
Adaptive Fuzzy Controllers Based on Variable Universe
,”
Sci. China Ser. E: Technol. Sci.
,
42
(
1
), pp.
10
20
.
22.
Billah
,
K. Y.
, and
Scanlan
,
R. H.
,
1991
, “
Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks
,”
Am. J. Phys.
,
59
(
2
), pp.
118
124
.
23.
Åkesson
,
J.
, and
Hagander
,
P.
,
2003
, “
Integral Action—A Disturbance Observer Approach
,”
2003 European Control Conference (ECC)
,
Cambridge, UK
,
Sept. 1–4
, IEEE, pp.
2577
2582
.
You do not currently have access to this content.