Abstract

Laser powder bed fusion (PBF/L) is a popular metal additive manufacturing (AM) process used to manufacture complex metallic 3D components. Maraging steel is one of the metals used in AM and it belongs to the class of ultra-high-strength steels used in aerospace and tooling industries. In the PBF/L process, a laser beam is used to melt and fuse the metal powder particles. This creates a high thermal gradient and rapid cooling of the melt pool results in columnar grains. The microstructure of AM part is entirely different from the conventionally manufactured case and this necessitates post-AM heat treatments. The current paper reviews the effects of printing parameters and heat treatment on microstructure and mechanical properties of PBF/L produced maraging steel 300 alloy. Tensile, impact, fracture, and fatigue properties of as-built and heat-treated PBF/L parts are discussed in detail.

References

1.
Gibson
,
I.
,
Rosen
,
D.
,
Stucker
,
B.
, and
Khorasani
,
M.
,
2021
,
Additive Manufacturing Technologies
, 3rd ed.,
Springer International Publishing
,
New York
.
2.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
3.
Lewandowski
,
J. J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
,
46
, pp.
151
186
.
4.
Europe
,
I.
,
1976
, “
18 Per Cent Nickel Maraging Steels – Engineering Properties
,” Tech. Rep. 4419, Nickel Development Institute.
5.
Habiby
,
F.
, and
Khan
,
A.
,
1994
, “
The Properties and Applications of 18% Nickel Maraging Steels
,”
Mater. Technol.
,
9
(
11–12
), pp.
246
252
.
6.
Garrison
,
W. M.
, and
Banerjee
,
M. K.
,
2018
, “Martensitic Non-Stainless Steels: High Strength and High Alloy,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
.
7.
Bieber
,
C. G.
,
1960
, “
Progress with 25% Nickel Steels for High Strength Applications
,”
Metal Progress
,
78
(
5
), pp.
99
100
.
8.
Mihalisin
,
J. R.
, and
Bieber
,
C. G.
,
1966
, “
Progress Toward Attaining Theoretical Strength with Iron-Nickel Maraging Steels
,”
JOM
,
18
(
9
), pp.
1033
1036
.
9.
Decker
,
R. F.
,
Floreen
,
S.
, and
Wilson
,
R. K.
,
1988
, “
Maraging Steel: Recent Developments and Applications
,”
Proceedings of the Symposium of TMS Annual Meeting
, pp.
1
38
.
10.
Garrison
,
W.
,
2001
, “Martensitic Non-Stainless Steels: High Strength and High Alloy,”
Encyclopedia of Materials: Science and Technology
,
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Ilschner
,
E. J.
Kramer
,
S.
Mahajan
, and
P.
Veyssière
, eds.,
Elsevier
, pp.
5197
5202
.
11.
Sha
,
W.
,
Leitner
,
H.
,
Guo
,
Z.
, and
Xu
,
W.
,
2012
,
11 – Phase Transformations in Maraging Steels
,
Phase Transformations in Steels
,
E.
Pereloma
, and
D. V.
Edmonds
, eds., (
Woodhead Publishing Series in Metals and Surface Engineering
, Vol.
2
),
Woodhead Publishing
, pp.
332
362
.
12.
Floreen
,
S.
, and
Speich
,
G.
,
1964
, “
Some Observations on the Strength and Toughness of Maraging Steels (addition of Cobalt and Molybdenum Produces Higher Strength Iron-nickel Base Alloys)
,”
ASM Trans. Quart.
,
57
, pp.
714
726
.
13.
Cox
,
T. B.
, and
Low
,
J. R.
,
1974
, “
Investigation of the Plastic Fracture of AISI 4340 and 18 Nickel – 200 Grade Maraging Steels
,”
Metallurgical Trans.
,
5
(
6
), pp.
1457
1470
.
14.
Hossein Nedjad
,
S.
,
Movaghar Garabagh
,
M. R.
,
Nili Ahmadabadi
,
M.
, and
Shirazi
,
H.
,
2008
, “
Effect of Further Alloying on the Microstructure and Mechanical Properties of An Fe-10Ni-5Mn Maraging Steel
,”
Mater. Sci. Eng. A
,
473
(
1-2
), pp.
249
253
.
15.
Xu
,
W.
,
Rivera-Díaz-del Castillo
,
P. E.
,
Wang
,
W.
,
Yang
,
K.
,
Bliznuk
,
V.
,
Kestens
,
L. A.
, and
van der Zwaag
,
S.
,
2010
, “
Genetic Design and Characterization of Novel Ultra-High-Strength Stainless Steels Strengthened by Ni3Ti Intermetallic Nanoprecipitates
,”
Acta Mater.
,
58
(
10
), pp.
3582
3593
.
16.
Sha
,
W.
, and
Guo
,
Z.
,
2009
,
Maraging Steels: Modelling of Microstructure, Properties and Applications
,
Woodhead Publishing Limited
,
Cambridge
.
17.
Schober
,
M.
,
Lerchbacher
,
C.
,
Eidenberger
,
E.
,
Staron
,
P.
,
Clemens
,
H.
, and
Leitner
,
H.
,
2010
, “
Precipitation Behavior of Intermetallic NiAl Particles in Fe-6 At.%Al-4 At.%Ni Analyzed by SANS and 3DAP
,”
Intermetallics
,
18
(
8
), pp.
1553
1559
.
18.
Leitner
,
H.
,
Schober
,
M.
, and
Schnitzer
,
R.
,
2010
, “
Splitting Phenomenon in the Precipitation Evolution in An Fe-Ni-Al-Ti-Cr Stainless Steel
,”
Acta Mater.
,
58
(
4
), pp.
1261
1269
.
19.
Floreen
,
S.
, and
Bayer
,
A. M.
,
1988
, “Development and Commercialization of Cobalt-free Maraging Steels,”
Maraging Steels: Recent Developments and Applications
,
TMS Annual Meeting Program
, pp.
39
54
.
20.
Bajaj
,
P.
,
Hariharan
,
A.
,
Kini
,
A.
,
Kürnsteiner
,
P.
,
Raabe
,
D.
, and
Jägle
,
E. A.
,
2020
, “
Steels in Additive Manufacturing: A Review of Their Microstructure and Properties
,”
Mater. Sci. Eng. A
,
772
, p.
138633
.
21.
Haghdadi
,
N.
,
Laleh
,
M.
,
Moyle
,
M.
, and
Primig
,
S.
,
2021
, “
Additive Manufacturing of Steels: a Review of Achievements and Challenges
,”
J. Mater. Sci.
,
56
(
1
), pp.
64
107
.
22.
Ladani
,
L.
, and
Sadeghilaridjani
,
M.
,
2021
, “
Review of Powder Bed Fusion Additive Manufacturing for Metals
,”
Metals
,
11
(
9
), p.
1391
.
23.
Mooney
,
B.
, and
Kourousis
,
K. I.
,
2020
, “
A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated Via Laser Powder Bed Fusion
,”
Metals
,
10
(
9
), pp.
1
22
.
24.
Guo
,
L.
,
Zhang
,
L.
,
Andersson
,
J.
, and
Ojo
,
O.
,
2022
, “
Additive Manufacturing of 18% Nickel Maraging Steels: Defect, Structure and Mechanical Properties: A Review
,”
J. Mater. Sci. Technol.
,
120
, pp.
227
252
.
25.
Casalino
,
G.
,
Campanelli
,
S. L.
,
Contuzzi
,
N.
, and
Ludovico
,
A. D.
,
2015
, “
Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel
,”
Optics Laser Technol.
,
65
, pp.
151
158
.
26.
Becker
,
T. H.
, and
DImitrov
,
D.
,
2016
, “
The Achievable Mechanical Properties of SLM Produced Maraging Steel 300 Components
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
487
494
.
27.
Casati
,
R.
,
Lemke
,
J. N.
,
Tuissi
,
A.
, and
Vedani
,
M.
,
2016
, “
Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting
,”
Metals
,
6
(
9
), p.
218
.
28.
Suryawanshi
,
J.
,
Prashanth
,
K. G.
, and
Ramamurty
,
U.
,
2017
, “
Tensile, Fracture, and Fatigue Crack Growth Properties of a 3D Printed Maraging Steel Through Selective Laser Melting
,”
J. Alloys Compd.
,
725
, pp.
355
364
.
29.
Yin
,
S.
,
Chen
,
C.
,
Yan
,
X.
,
Feng
,
X.
,
Jenkins
,
R.
,
O’Reilly
,
P.
,
Liu
,
M.
,
Li
,
H.
, and
Lupoi
,
R.
,
2018
, “
The Influence of Aging Temperature and Aging Time on the Mechanical and Tribological Properties of Selective Laser Melted Maraging 18Ni-300 Steel
,”
Addit. Manuf.
,
22
, pp.
592
600
.
30.
Tan
,
C.
,
Zhou
,
K.
,
Kuang
,
M.
,
Ma
,
W.
, and
Kuang
,
T.
,
2018
, “
Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions
,”
Sci. Technol. Adv. Mater.
,
19
(
1
), pp.
746
758
.
31.
Mutua
,
J.
,
Nakata
,
S.
,
Onda
,
T.
, and
Chen
,
Z. C.
,
2018
, “
Optimization of Selective Laser Melting Parameters and Influence of Post Heat Treatment on Microstructure and Mechanical Properties of Maraging Steel
,”
Mater. Des.
,
139
, pp.
486
497
.
32.
Guo
,
W.
,
Guo
,
C.
, and
Zhu
,
Q.
,
2018
, “
Heat Treatment Behavior of the 18Ni300 Maraging Steel Additively Manufactured by Selective Laser Melting
,”
Mater. Sci. Forum
,
941
, pp.
2160
2166
.
33.
Bhardwaj
,
T.
, and
Shukla
,
M.
,
2018
, “
Effect of Laser Scanning Strategies on Texture, Physical and Mechanical Properties of Laser Sintered Maraging Steel
,”
Mater. Sci. Eng. A
,
734
, pp.
102
109
.
34.
Damon
,
J.
,
Hanemann
,
T.
,
Dietrich
,
S.
,
Graf
,
G.
,
Lang
,
K. H.
, and
Schulze
,
V.
,
2019
, “
Orientation Dependent Fatigue Performance and Mechanisms of Selective Laser Melted Maraging Steel X3NiCoMoTi18-9-5
,”
Int. J. Fatigue
,
127
, pp.
395
402
.
35.
Mooney
,
B.
,
Kourousis
,
K. I.
, and
Raghavendra
,
R.
,
2019
, “
Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments
,”
Addit. Manuf.
,
25
, pp.
19
31
.
36.
Mooney
,
B.
,
Kourousis
,
K. I.
,
Raghavendra
,
R.
, and
Agius
,
D.
,
2019
, “
Process Phenomena Influencing the Tensile and Anisotropic Characteristics of Additively Manufactured Maraging Steel
,”
Mater. Sci. Eng. A
,
745
, pp.
115
125
.
37.
Song
,
J.
,
Tang
,
Q.
,
Feng
,
Q.
,
Ma
,
S.
,
Setchi
,
R.
,
Liu
,
Y.
,
Han
,
Q.
,
Fan
,
X.
, and
Zhang
,
M.
,
2019
, “
Effect of Heat Treatment on Microstructure and Mechanical Behaviours of 18Ni-300 Maraging Steel Manufactured by Selective Laser Melting
,”
Opt. Laser Technol.
,
120
, p.
105725
.
38.
Bai
,
Y.
,
Wang
,
D.
,
Yang
,
Y.
, and
Wang
,
H.
,
2019
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Maraging Steel by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
760
, pp.
105
117
.
39.
de Souza
,
A. F.
,
Al-Rubaie
,
K. S.
,
Marques
,
S.
,
Zluhan
,
B.
, and
Santos
,
E. C.
,
2019
, “
Effect of Laser Speed, Layer Thickness, and Part Position on the Mechanical Properties of Maraging 300 Parts Manufactured by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
767
, p.
138425
.
40.
Kučerová
,
L.
,
Zetková
,
I.
,
Jandová
,
A.
, and
Bystrianský
,
M.
,
2019
, “
Microstructural Characterisation and in-situ Straining of Additive-manufactured X3NiCoMoTi 18-9-5 Maraging Steel
,”
Mater. Sci. Eng. A
,
750
, pp.
70
80
.
41.
Raju
,
N.
,
Kim
,
S.
, and
Rosen
,
D. W.
,
2020
, “
A Characterization Method for Mechanical Properties of Metal Powder Bed Fusion Parts
,”
Int. J. Adv. Manuf. Technol.
,
108
(
4
), pp.
1189
1201
.
42.
Vishwakarma
,
J.
,
Chattopadhyay
,
K.
, and
Santhi Srinivas
,
N. C.
,
2020
, “
Effect of Build Orientation on Microstructure and Tensile Behaviour of Selectively Laser Melted M300 Maraging Steel
,”
Mater. Sci. Eng. A
,
798
, p.
140130
.
43.
Wu
,
W.
,
Wang
,
X.
,
Wang
,
Q.
,
Liu
,
J.
,
Zhang
,
Y.
,
Hua
,
T.
, and
Jiang
,
P.
,
2020
, “
Microstructure and Mechanical Properties of Maraging 18Ni-300 Steel Obtained by Powder Bed Based Selective Laser Melting Process
,”
Rapid Prototyp. J.
,
26
(
8
), pp.
1379
1387
.
44.
Elangeswaran
,
C.
,
Gurung
,
K.
,
Koch
,
R.
,
Cutolo
,
A.
, and
Van Hooreweder
,
B.
,
2020
, “
Post-treatment Selection for Tailored Fatigue Performance of 18Ni300 Maraging Steel Manufactured by Laser Powder Bed Fusion
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
10
), pp.
2359
2375
.
45.
Hovig
,
E. W.
,
Azar
,
A. S.
,
Solberg
,
K.
, and
Sørby
,
K.
,
2021
, “
An Investigation of the Anisotropic Properties of Heat-treated Maraging Steel Grade 300 Processed by Laser Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
114
(
5-6
), pp.
1359
1372
.
46.
Oliveira
,
A. R.
,
Diaz
,
J. A.
,
Nizes
,
A. D.
,
Jardini
,
A. L.
, and
Del Conte
,
E. G.
,
2021
, “
Investigation of Building Orientation and Aging on Strength–Stiffness Performance of Additively Manufactured Maraging Steel
,”
J. Mater. Eng. Perform.
,
30
(
2
), pp.
1479
1489
.
47.
Shamsdini
,
S. A. R.
,
Pirgazi
,
H.
,
Ghoncheh
,
M. H.
,
Sanjari
,
M.
,
Amirkhiz
,
B. S.
,
Kestens
,
L.
, and
Mohammadi
,
M.
,
2021
, “
A Relationship Between the Build and Texture Orientation in Tensile Loading of the Additively Manufactured Maraging Steels
,”
Addit. Manuf.
,
41
, p.
101954
.
48.
Costas
,
M.
,
Edwards-Mowforth
,
M.
,
Kristoffersen
,
M.
,
Teixeira-Dias
,
F.
,
Brøtan
,
V.
,
Paulsen
,
C. O.
, and
Børvik
,
T.
,
2021
, “
Ballistic Impact Resistance of Additive Manufactured High-strength Maraging Steel: An Experimental Study
,”
Int. J. Protective Struct.
,
12
(
4
), pp.
577
603
.
49.
Karlapudy
,
S. P.
,
Nancharaiah
,
T.
, and
Rao
,
V. V.
,
2021
, “
Influence of Different Build Orientation and Laser Scan Strategies on Surface Quality, Mechanical and Material Characteristics of 18 Ni-300 Maraging Steel Processed Through DMLS
,”
Austral. J. Mech. Eng.
, pp.
1
15
.
50.
Szachogłuchowicz
,
I.
,
Fikus
,
B.
,
Grzelak
,
K.
,
Kluczyński
,
J.
,
Torzewski
,
J.
, and
Łuszczek
,
J.
,
2021
, “
Selective Laser Melted M300 Maraging Steel–Material Behaviour During Ballistic Testing
,”
Materials
,
14
(
10
), p.
2681
.
51.
Jarfors
,
A. E.
,
Matsushita
,
T.
,
Siafakas
,
D.
, and
Stolt
,
R.
,
2021
, “
On the Nature of the Anisotropy of Maraging Steel (1.2709) in Additive Manufacturing Through Powder Bed Laser-Based Fusion Processing
,”
Mater. Des.
,
204
, p.
109608
.
52.
Doh
,
J.
,
Raju
,
N.
,
Raghavan
,
N.
,
Rosen
,
D. W.
, and
Kim
,
S.
,
2022
, “
Bayesian Inference-based Decision of Fatigue Life Model for Metal Additive Manufacturing Considering Effects of Build Orientation and Post-Processing
,”
Int. J. Fatigue
,
155
, p.
106535
.
53.
Mei
,
X.
,
Yan
,
Y.
,
Fu
,
H.
,
Gao
,
X.
,
Huang
,
S.
, and
Qiao
,
L.
,
2022
, “
Effect of Aging Temperature on Microstructure Evolution and Strengthening Behavior of L-PBF 18Ni(300) Maraging Steel
,”
Addit. Manuf.
,
58
, p.
103071
.
54.
Song
,
J.
,
Tang
,
Q.
,
Chen
,
H.
,
Zhang
,
Z.
,
Feng
,
Q.
,
Zhao
,
M.
,
Ma
,
S.
, and
Setchi
,
R.
,
2022
, “
Laser Powder Bed Fusion of High-Strength Maraging Steel with Concurrently Enhanced Strength and Ductility After Heat Treatments
,”
Mater. Sci. Eng. A
,
854
, p.
143818
.
55.
Paul
,
M. J.
,
Muniandy
,
Y.
,
Kruzic
,
J. J.
,
Ramamurty
,
U.
, and
Gludovatz
,
B.
,
2022
, “
Effect of Heat Treatment on the Strength and Fracture Resistance of a Laser Powder Bed Fusion-Processed 18Ni-300 Maraging Steel
,”
Mater. Sci. Eng. A
,
844
, p.
143167
.
56.
Santos
,
P. L.
,
Avila
,
J. A.
,
da Fonseca
,
E. B.
,
Gabriel
,
A. H.
,
Jardini
,
A. L.
, and
Lopes
,
É. S.
,
2022
, “
Plane-Strain Fracture Toughness of Thin Additively Manufactured Maraging Steel Samples
,”
Addit. Manuf.
,
49
, p.
102509
.
57.
Zhao
,
Z.
,
Wang
,
L.
,
Kong
,
D.
,
Liu
,
P.
,
He
,
X.
,
Ni
,
X.
,
Zhang
,
L.
, and
Dong
,
C.
,
2022
, “
Texture Dependence on the Mechanical Properties of 18Ni300 Maraging Steel Fabricated by Laser Powder Bed Fusion
,”
Mater. Charact.
,
189
, p.
111938
.
58.
Song
,
J.
,
Tang
,
Q.
,
Feng
,
Q.
,
Han
,
Q.
,
Ma
,
S.
,
Chen
,
H.
,
Guo
,
F.
, and
Setchi
,
R.
,
2022
, “
Effect of Remelting Processes on the Microstructure and Mechanical Behaviours of 18Ni-300 Maraging Steel Manufactured by Selective Laser Melting
,”
Mater. Charact.
,
184
, p.
111648
.
59.
Mao
,
Z.
,
Lu
,
X.
,
Yang
,
H.
,
Niu
,
X.
,
Zhang
,
L.
, and
Xie
,
X.
,
2022
, “
Processing Optimization, Microstructure, Mechanical Properties and Nanoprecipitation Behavior of 18Ni300 Maraging Steel in Selective Laser Melting
,”
Mater. Sci. Eng. A
,
830
, p.
142334
.
60.
Vasudevan
,
V. K.
,
Kim
,
S. J.
, and
Wayman
,
C. M.
,
1990
, “
Precipitation Reactions and Strengthening Behavior in 18 Wt Pct Nickel Maraging Steels
,”
Metall. Trans. A Phys. Metall. Mater. Sci.
,
21 A
(
10
), pp.
2655
2668
.
61.
Mouritz
,
A. P.
,
2012
, “11 – Steels for Aircraft Structures,”
Introduction to Aerospace Materials
,
A. P.
Mouritz
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
232
250
.
62.
Banerjee
,
M. K.
,
2017
, “2.8 Heat Treatment of Commercial Steels for Engineering Applications,”
Comprehensive Materials Finishing
,
M. S. J.
Hashmi
, ed., Vols.
2–3
,
Elsevier
, pp.
180
213
.
63.
Krauss
,
G.
,
2014
, “12.11 – Quench and Tempered Martensitic Steels: Microstructures and Performance,”
Comprehensive Materials Processing
,
S.
Hashmi
,
G. F.
Batalha
,
C. J.
Van Tyne
, and
B.
Yilbas
, eds.,
Elsevier
, pp.
363
378
.
64.
Peters
,
D.
, and
Cupp
,
C.
,
1966
, “
The Kinetics of Aging Reactions in 18 Per Cent Ni Maraging Steels
,”
AIME Met. Soc. Trans.
,
236
(
10
), pp.
1420
1429
.
65.
Morris
,
J. W.
,
Kinney
,
C.
,
Pytlewski
,
K.
, and
Adachi
,
Y.
,
2013
, “
Microstructure and Cleavage in Lath Martensitic Steels
,”
Sci. Technol. Adv. Mater.
,
14
(
1
), pp.
14208
14217
.
66.
Zhou
,
T.
,
Faleskog
,
J.
,
Babu
,
R. P.
,
Odqvist
,
J.
,
Yu
,
H.
, and
Hedström
,
P.
,
2019
, “
Exploring the Relationship Between the Microstructure and Strength of Fresh and Tempered Martensite in a Maraging Stainless Steel Fe–15Cr–5Ni
,”
Mater. Sci. Eng. A
,
745
, pp.
420
428
.
67.
Gemperle
,
A.
,
Gemperlová
,
J.
,
Sha
,
W.
, and
Smith
,
G. D.
,
1992
, “
Aging Behaviour of Cobalt Free Chromium Containing Maraging Steels
,”
Mater. Sci. Technol.
,
8
(
6
), pp.
546
554
.
68.
Sha
,
W.
,
Leitner
,
H.
,
Guo
,
Z.
, and
Xu
,
W.
,
2012
, “11 – Phase Transformations in Maraging Steels,”
Phase Transformations in Steels
,
E.
Pereloma
and
D. V.
Edmonds
, eds.,
Woodhead Publishing
,
Cambridge
, pp.
332
362
.
69.
Psioda
,
J. A.
, and
Low Jr.
,
J. R.
,
1977
, “
The Effect of Microstructure and Strength on The Fracture Toughness of An 18 ni, 300 Grade Maraging Steel
,” Tech. Rep. NASA-CR-l35288, National Aeronautics and Space Administration, November.
70.
El-Fawkhry
,
M. K.
,
Eissa
,
M.
,
Fathy
,
A.
, and
Mattar
,
T.
,
2015
, “
Development of Maraging Steel with Retained Austenite in Martensite Matrix
,”
Mater. Today Proc.
,
2
, pp.
S711
S714
.
71.
Sinha
,
P. P.
,
Sivakumar
,
D.
,
Babu
,
N. S.
,
Tharian
,
K. T.
, and
Natarajan
,
A.
,
1995
, “
Austenite Reversion in 18 Ni Co-free Maraging Steel
,”
Steel Res.
,
66
(
11
), pp.
490
494
.
72.
Panov
,
D.
,
Kudryavtsev
,
E.
,
Chernichenko
,
R.
,
Smirnov
,
A.
,
Stepanov
,
N.
,
Simonov
,
Y.
,
Zherebtsov
,
S.
, and
Salishchev
,
G.
,
2021
, “
Mechanisms of the Reverse Martensite–to–austenite Transformation in a Metastable Austenitic Stainless Steel
,”
Metals
,
11
(
4
), p.
599
.
73.
Król
,
M.
,
Snopiński
,
P.
, and
Czech
,
A.
,
2020
, “
The Phase Transitions in Selective Laser-melted 18-NI (300-grade) Maraging Steel
,”
J. Therm. Anal. Calorim.
,
142
(
2
), pp.
1011
1018
.
74.
Katz
,
Y.
,
Mathias
,
H.
, and
Nadiv
,
S.
,
1983
, “
Mechanical Stability of Austenite in Maraging Steels
,”
Metall. Trans. A Phys. Metall. Mater. Sci.
,
14 A
(
4
), pp.
801
808
.
75.
Sha
,
W.
,
2013
, “Ultra High-Strength Maraging Steel,”
Steels
,
Springer
,
London
, pp.
141
161
.
76.
Li
,
Y.
,
Li
,
W.
,
Liu
,
W.
,
Wang
,
X.
,
Hua
,
X.
,
Liu
,
H.
, and
Jin
,
X.
,
2018
, “
The Austenite Reversion and Co-Precipitation Behavior of An Ultra-Low Carbon Medium Manganese Quenching-Partitioning-tempering Steel
,”
Acta Mater.
,
146
, pp.
126
141
.
77.
Wu
,
S.
,
Wang
,
D.
,
Di
,
X.
,
Li
,
C.
,
Zhang
,
Z.
,
Zhou
,
Z.
, and
Liu
,
X.
,
2019
, “
Strength-toughness Improvement of Martensite-Austenite Dual Phase Deposited Metals After Austenite Reversed Treatment with Short Holding Time
,”
Mater. Sci. Eng. A
,
755
, pp.
57
65
.
78.
Viswanathan
,
U. K.
,
Dey
,
G. K.
, and
Sethumadhavan
,
V.
,
2005
, “
Effects of Austenite Reversion During Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel
,”
Mater. Sci. Eng. A
,
398
(
1–2
), pp.
367
372
.
79.
Ooi
,
S. W.
,
Hill
,
P.
,
Rawson
,
M.
, and
Bhadeshia
,
H. K.
,
2013
, “
Effect of Retained Austenite and High Temperature Laves Phase on the Work Hardening of An Experimental Maraging Steel
,”
Mater. Sci. Eng. A
,
564
, pp.
485
492
.
80.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
81.
Kuo
,
Y. L.
,
Horikawa
,
S.
, and
Kakehi
,
K.
,
2017
, “
Effects of Build Direction and Heat Treatment on Creep Properties of Ni-Base Superalloy Built Up by Additive Manufacturing
,”
Scr. Mater.
,
129
, pp.
74
78
.
82.
Tan
,
C.
,
Zhou
,
K.
,
Ma
,
W.
,
Zhang
,
P.
,
Liu
,
M.
, and
Kuang
,
T.
,
2017
, “
Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel
,”
Mater. Des.
,
134
, pp.
23
34
.
83.
Monkova
,
K.
,
Zetkova
,
I.
,
Kučerová
,
L.
,
Zetek
,
M.
,
Monka
,
P.
, and
Daňa
,
M.
,
2019
, “
Study of 3D Printing Direction and Effects of Heat Treatment on Mechanical Properties of MS1 Maraging Steel
,”
Arch. Appl. Mech.
,
89
(
5
), pp.
791
804
.
84.
Bai
,
Y.
,
Yang
,
Y.
,
Xiao
,
Z.
, and
Wang
,
D.
,
2018
, “
Selective Laser Melting of Maraging Steel: Mechanical Properties Development and Its Application in Mold
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
623
629
.
85.
Kannan
,
R.
, and
Nandwana
,
P.
,
2022
, “
Texture Evolution During Processing and Post-processing of Maraging Steel Fabricated by Laser Powder Bed Fusion
,”
Sci. Rep.
,
12
(
1
), pp.
1
17
.
86.
Kempen
,
K.
,
Yasa
,
E.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2011
, “
Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel
,”
Phys. Procedia
,
12
, pp.
255
263
.
87.
Jägle
,
E. A.
,
Choi
,
P.-P.
,
Humbeeck
,
J. V.
, and
Raabe
,
D.
,
2014
, “
Precipitation and Austenite Reversion Behavior of a Maraging Steel Produced by Selective Laser Melting
,”
J. Mater. Res.
,
29
(
17
), pp.
2072
2079
.
88.
Takata
,
N.
,
Nishida
,
R.
,
Suzuki
,
A.
,
Kobashi
,
M.
, and
Kato
,
M.
,
2018
, “
Crystallographic Features of Microstructure in Maraging Steel Fabricated by Selective Laser Melting
,”
Metals
,
8
(
6
), p.
440
.
89.
Chadha
,
K.
,
Tian
,
Y.
,
Bocher
,
P.
,
Spray
,
J. G.
, and
Aranas
,
C.
,
2020
, “
Microstructure Evolution, Mechanical Properties and Deformation Behavior of An Additively Manufactured Maraging Steel
,”
Materials
,
13
(
10
), p.
2380
.
90.
Tyczyński
,
P.
,
Siemiatkowski
,
Z.
,
Bak
,
P.
,
Warzocha
,
K.
,
Rucki
,
M.
, and
Szumiata
,
T.
,
2020
, “
Performance of Maraging Steel Sleeves Produced by SLM with Subsequent Age Hardening
,”
Materials
,
13
(
15
), pp.
1
16
.
91.
Campanelli
,
S. L.
,
Contuzzi
,
N.
,
Posa
,
P.
, and
Angelastro
,
A.
,
2019
, “
Study of the Aging Treatment on Selective Laser Melted Maraging 300 Steel
,”
Mater. Res. Express
,
6
(
6
), p.
066580
.
92.
Bodziak
,
S.
,
Al-Rubaie
,
K. S.
,
Valentina
,
L. D.
,
Lafratta
,
F. H.
,
Santos
,
E. C.
,
Zanatta
,
A. M.
, and
Chen
,
Y.
,
2019
, “
Precipitation in 300 Grade Maraging Steel Built by Selective Laser Melting: Aging At 500 °C for 2 H
,”
Mater. Charact.
,
151
, pp.
73
83
.
93.
Jägle
,
E. A.
,
Sheng
,
Z.
,
Kürnsteiner
,
P.
,
Ocylok
,
S.
,
Weisheit
,
A.
, and
Raabe
,
D.
,
2016
, “
Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing
,”
Materials
,
10
(
1
), p.
8
.
94.
Pereloma
,
E. V.
,
Stohr
,
R. A.
,
Miller
,
M. K.
, and
Ringer
,
S. P.
,
2009
, “
Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3069
3075
.
95.
Huang
,
G.
,
Wei
,
K.
,
Deng
,
J.
, and
Zeng
,
X.
,
2022
, “
High Power Laser Powder Bed Fusion of 18Ni300 Maraging Steel: Processing Optimization, Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
856
, p.
143983
.
96.
Raghavan
,
S.
,
Dzugan
,
J.
,
Rzepa
,
S.
,
Podany
,
P.
,
Soh
,
N.
,
Hao
,
L. J.
, and
Khan
,
N.
,
2023
, “
Effect of Post-treatment on Local Mechanical Properties of Additively Manufactured Impellers Made of Maraging Steel
,”
Rapid Prototyp. J.
,
29
(
3
), pp.
594
611
.
97.
Cyr
,
E.
,
Lloyd
,
A.
, and
Mohammadi
,
M.
,
2018
, “
Tension-Compression Asymmetry of Additively Manufactured Maraging Steel
,”
J. Manuf. Proc.
,
35
, pp.
289
294
.
98.
Cao
,
Q.
,
Zhang
,
J.
,
Chang
,
S.
,
Fuh
,
J. Y. H.
, and
Wang
,
H.
,
2020
, “
The Effect of Support Structures on Maraging Steel MS1 Parts Fabricated by Selective Laser Melting At Different Building Angles
,”
Rapid Prototyp. J.
,
26
(
9
), pp.
1465
1476
.
99.
Meneghetti
,
G.
,
Rigon
,
D.
,
Cozzi
,
D.
,
Waldhauser
,
W.
, and
Dabalà
,
M.
,
2017
, “
Influence of Build Orientation on Static and Axial Fatigue Properties of Maraging Steel Specimens Produced by Additive Manufacturing
,”
Procedia Struct. Integr.
,
7
, pp.
149
157
.
100.
Mugwagwa
,
L.
,
Yadroitsev
,
I.
, and
Matope
,
S.
,
2019
, “
Effect of Process Parameters on Residual Stresses, Distortions, and Porosity in Selective Laser Melting of Maraging Steel 300
,”
Metals
,
9
(
10
), p.
1042
.
101.
Carlsson
,
S.
, and
Larsson
,
P. L.
,
2001
, “
On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing.: Part I: Theoretical and Numerical Analysis
,”
Acta Mater.
,
49
(
12
), pp.
2179
2191
.
102.
Carlsson
,
S.
, and
Larsson
,
P. L.
,
2001
, “
On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing.: Part II: Experimental Investigation
,”
Acta Mater.
,
49
(
12
), pp.
2193
2203
.
103.
Solberg
,
K.
,
Hovig
,
E. W.
,
Sørby
,
K.
, and
Berto
,
F.
,
2021
, “
Directional Fatigue Behaviour of Maraging Steel Grade 300 Produced by Laser Powder Bed Fusion
,”
Int. J. Fatigue
,
149
, p.
106229
.
104.
Xiao
,
H.
,
Chen
,
Y.
,
Liu
,
M.
,
Zhou
,
Y.
,
Du
,
C.
, and
Zhang
,
W.
,
2022
, “
Influence of Laser Additive Manufacturing and Laser Polishing on Microstructures and Mechanical Properties of High-Strength Maraging Steel Metal Materials
,”
Appl. Sci.
,
12
(
20
), p.
10340
.
105.
Croccolo
,
D.
,
De Agostinis
,
M.
,
Fini
,
S.
,
Olmi
,
G.
,
Vranic
,
A.
, and
Ciric-Kostic
,
S.
,
2016
, “
Influence of the Build Orientation on the Fatigue Strength of EOS Maraging Steel Produced by Additive Metal Machine
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
5
), pp.
637
647
.
106.
Croccolo
,
D.
,
De Agostinis
,
M.
,
Fini
,
S.
,
Olmi
,
G.
,
Robusto
,
F.
,
Ćirić-Kostić
,
S.
,
Morača
,
S.
, and
Bogojević
,
N.
,
2019
, “
Sensitivity of Direct Metal Laser Sintering Maraging Steel Fatigue Strength to Build Orientation and Allowance for Machining
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
1
), pp.
374
386
.
107.
Croccolo
,
D.
,
De Agostinis
,
M.
,
Fini
,
S.
,
Olmi
,
G.
,
Robusto
,
F.
,
Kostić
,
S. Ć.
,
Vranić
,
A.
, and
Bogojević
,
N.
,
2018
, “
Fatigue Response of As-Built DMLS Maraging Steel and Effects of Aging, Machining, and Peening Treatments
,”
Metals
,
8
(
7
), p.
505
.
108.
Tezel
,
T.
, and
Kovan
,
V.
,
2022
, “
Heat Treatment Effect on Fatigue Behavior of 3D-printed Maraging Steels
,”
Rapid Prototyp. J.
,
28
(
1
), pp.
175
184
.
109.
Meneghetti
,
G.
,
Rigon
,
D.
, and
Gennari
,
C.
,
2019
, “
An Analysis of Defects Influence on Axial Fatigue Strength of Maraging Steel Specimens Produced by Additive Manufacturing
,”
Int. J. Fatigue
,
118
, pp.
54
64
.
110.
Van Swam
,
L. F.
,
Pelloux
,
R. M.
, and
Grant
,
N. J.
,
1975
, “
Fatigue Behavior of Maraging Steel 300
,”
Metall. Trans. A
,
6
(
1
), pp.
45
54
.
111.
Branco
,
R.
,
Costa
,
J. D.
,
Berto
,
F.
,
Razavi
,
S. M. J.
,
Ferreira
,
J. A.
,
Capela
,
C.
,
Santos
,
L.
, and
Antunes
,
F.
,
2018
, “
Low-Cycle Fatigue Behaviour of AISI 18Ni300 Maraging Steel Produced by Selective Laser Melting
,”
Metals
,
8
(
1
), p.
32
.
112.
Antunes
,
F.
,
Santos
,
L.
,
Capela
,
C.
,
Ferreira
,
J.
,
Costa
,
J.
,
Jesus
,
J.
, and
Prates
,
P.
,
2019
, “
Fatigue Crack Growth in Maraging Steel Obtained by Selective Laser Melting
,”
Appl. Sci.
,
9
(
20
), p.
4412
.
113.
Cruces
,
A. S.
,
Exposito
,
A.
,
Branco
,
R.
,
Borrego
,
L. P.
,
Antunes
,
F. V.
, and
Lopez-Crespo
,
P.
,
2022
, “
Study of the Notch Fatigue Behaviour Under Biaxial Conditions of Maraging Steel Produced by Selective Laser Melting
,”
Theor. Appl. Fract. Mech.
,
121
, p.
103469
.
114.
Dehgahi
,
S.
,
Alaghmandfard
,
R.
,
Tallon
,
J.
,
Odeshi
,
A.
, and
Mohammadi
,
M.
,
2021
, “
Microstructural Evolution and High Strain Rate Compressive Behavior of As-built and Heat-treated Additively Manufactured Maraging Steels
,”
Mater. Sci. Eng. A
,
815
, p.
141183
.
115.
Dehgahi
,
S.
,
Pirgazi
,
H.
,
Sanjari
,
M.
,
Seraj
,
P.
,
Odeshi
,
A.
,
Kestens
,
L. A.
, and
Mohammadi
,
M.
,
2022
, “
Effect of Building Direction on High Strain-Rate Compressive Behavior of Heat-Treated LPBF-maraging Steels Using Split Hopkinson Pressure Bar Apparatus
,”
Mater. Sci. Eng. A
,
835
, p.
142653
.
You do not currently have access to this content.