Abstract

High-strength and corrosion-resistant materials, such as the nickel-based superalloy Inconel 718, are widely used in the energy and aerospace industries. However, machining these materials results in high process forces and significant tool wear. This tool wear negatively influences the resulting surface topography. Nevertheless, the accuracy requirements for functional surfaces are extremely high. Simulation systems can be used to design these processes. However, time-consuming and cost-intensive experiments often have to be conducted to develop and parameterize the required models. To overcome this problem, an analogy test setup for in-process measurements of wear-dependent properties was developed, which allows a multi-level evaluation of the process. By combining different measurement techniques, wear-dependent process characteristics can be determined and analyzed, which is usually only possible for initial and final conditions requiring a significant measurement effort.

References

1.
Konya
,
G.
,
Kovacs
,
Z. F.
, and
Kokai
,
E.
,
2022
, “
Milling of Nickel-Based Superalloy by Trochoidal Strategies
,”
Proceedings of the 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTIMACRo)
,
Budapest, Hungary
,
Nov. 21–22
.
2.
Bartolomeis
,
A. D.
,
Newman
,
S. T.
,
Jawahir
,
I.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
3.
Liang
,
X.
,
Liu
,
Z.
, and
Wang
,
B.
,
2019
, “
State-of-the-Art of Surface Integrity Induced by Tool Wear Effects in Machining Process of Titanium and Nickel Alloys: A Review
,”
Measurement
,
132
, pp.
150
181
.
4.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Annals
,
63
(
2
), pp.
585
605
.
5.
Wiederkehr
,
P.
,
Siebrecht
,
T.
,
Baumann
,
J.
, and
Biermann
,
D.
,
2018
, “
Point-Based Tool Representations for Modeling Complex Tool Shapes and Runout for the Simulation of Process Forces and Chatter Vibrations
,”
Adv. Manuf.
,
6
(
3
), pp.
301
307
.
6.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Annals
,
65
(
2
), pp.
785
808
.
7.
Bergmann
,
J. A.
,
Potthoff
,
N.
,
Rickhoff
,
T.
, and
Wiederkehr
,
P.
,
2021
, “
Modeling of Cutting Forces in Trochoidal Milling With Respect to Wear-Dependent Topographic Changes
,”
Prod. Eng.
,
15
(
6
), pp.
761
769
.
8.
Wöste
,
F.
,
Baumann
,
J.
,
Bergmann
,
J. A.
,
Carballo
,
R. G.
, and
Wiederkehr
,
P.
,
2020
, “
Experimental Setup for Analyzing Fundamentals of Cutting Processes Using a Modular System
,”
MM Sci. J.
,
2020
(
1
), pp.
3754
3758
.
9.
Ozturk
,
E.
,
Kumar
,
U.
,
Turner
,
S.
, and
Schmitz
,
T.
,
2012
, “
Investigation of Spindle Bearing Preload on Dynamics and Stability Limit in Milling
,”
CIRP Annals
,
61
(
1
), pp.
343
346
.
10.
Moehring
,
H.-C.
,
Wiederkehr
,
P.
,
Erkorkmaz
,
K.
, and
Kakinuma
,
Y.
,
2020
, “
Self-Optimizing Machining Systems
,”
CIRP Annals
,
69
(
2
), pp.
740
763
.
11.
Teti
,
R.
,
Mourtzis
,
D.
,
D’Addona
,
D.
, and
Caggiano
,
A.
,
2022
, “
Process Monitoring of Machining
,”
CIRP Ann.
,
71
(
2
), pp.
529
552
.
12.
Gao
,
W.
,
Haitjema
,
H.
,
Fang
,
F.
,
Leach
,
R.
,
Cheung
,
C.
,
Savio
,
E.
, and
Linares
,
J.-M.
,
2019
, “
On-Machine and In-Process Surface Metrology for Precision Manufacturing
,”
CIRP Annals
,
68
(
2
), pp.
843
866
.
13.
Shimizu
,
Y.
,
Chen
,
L. C.
,
Kim
,
D. W.
,
Chen
,
X.
,
Li
,
X.
, and
Matsukuma
,
H.
,
2020
, “
An Insight into Optical Metrology in Manufacturing
,”
Meas. Sci. Technol.
,
32
(
4
), p.
042003
.
14.
Syam
,
W. P.
,
2020
, “In-Process Surface Topography Measurements,”
Advances in Optical Surface Texture Metrology
,
R. K.
Leach
, ed.,
IOP Publishing
,
Bristol, UK
.
15.
Fu
,
S.
,
Kor
,
W. S.
,
Cheng
,
F.
, and
Seah
,
L. K.
,
2020
, “
In-Situ Measurement of Surface Roughness Using Chromatic Confocal Sensor
,”
Procedia CIRP
,
94
, pp.
780
784
.
16.
Akowua
,
K. D.
,
Fletcher
,
S.
,
Longstaff
,
A. P.
, and
Mian
,
N. S.
,
2017
, “
Areal Surface Measurement Using Multidirectional Laser Line Scanning
,” Laser Metrology and Machine Performance XII, pp.
175
182
.
17.
Gurdal
,
O.
,
Rae
,
B.
,
Zonuzi
,
A.
, and
Ozturk
,
E.
,
2019
, “
Vision-Assisted Robotic Finishing of Friction Stir-Welded Corner Joints
,”
Procedia Manuf.
,
40
, pp.
70
76
.
18.
ISO 21920-2:2021-12
,
2021
, “
Geometrical Product Specifications (gps)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters
.”
19.
ISO 8688-2
,
1989
, “
Tool Life Testing in Milling—Part 2: End Milling
,” International Organization for Standardization. ISO.
20.
Liu
,
C.
,
Ren
,
C.
,
Wang
,
G.
,
Yang
,
Y.
, and
Zhang
,
L.
,
2015
, “
Study on Surface Defects in Milling Inconel 718 Super Alloy
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1723
1730
.
21.
Lin
,
C.-J.
,
Lui
,
Y.-T.
,
Lin
,
Y.-F.
,
Wang
,
H.-B.
,
Liang
,
S. Y.
, and
Wang
,
J.-J. J.
,
2021
, “
Prediction of Shearing and Ploughing Constants in Milling of Inconel 718
,”
J. Manuf. Mater. Process.
,
5
(
1
), p.
8
.
22.
Potthoff
,
N.
, and
Wiederkehr
,
P.
,
2021
, “
Fundamental Investigations on Wear Evolution of Machining Inconel 718
,”
Procedia CIRP
,
99
, pp.
171
176
.
You do not currently have access to this content.