Abstract

Deep Drawing is an essential manufacturing technology for car body parts. High process stability is a key to reducing scrap and therefore the ecological footprint during production. To deal with an unknown fluctuation of the incoming material properties and uncertainties considering the friction, an adaptive process needs to be implemented. Various approaches have been pursued in the past, but not all of them are suited for industrial series production with high demands for equipment durability, cost efficiency, and flexibility. For this reason, a new concept for cyber-physical production systems (CPPS) in deep drawing is presented, linking the data from the simulation, tool, press, material, and finished part quality. Two common application scenarios are distinguished. First, these are large outer parts with a complex geometry and high value, typically produced with tandem presses. Second, smaller structural parts from high-strength steel for the body in white (BIW) are usually produced through a transfer or progressive die. Non-destructive material testing, supplier material certificates, and data measured directly in the forming tool are considered regarding the input. The servo curve and blank holder force (BHF) operate as control instances. Within the two application scenarios, a reactive and a preventive solution are characterized. As a first step toward the implementation of the CPPS, material inflow, and force sensors are installed and tested in an industrially relevant deep drawing tool.

References

1.
Lange
,
K.
,
1990
,
Umformtechnik—Handbuch für Industrie und Wissenschaft Band 3: Blechbearbeitung
,
Springer Verlag
,
Berlin, Germany
.
2.
Thaddaeus
,
S.
, and
Henri
,
P.
,
2021
, Adjustable Balancing Block for Closed Loop Die Control, WO2021141819A1.
3.
Allwood
,
J. M.
,
Duncan
,
S. R.
,
Cao
,
J.
,
Groche
,
P.
,
Hirt
,
G.
,
Kinsey
,
B.
,
Kuboki
,
T.
,
Liewald
,
M.
,
Sterzing
,
A.
, and
Tekkaya
,
A. E.
,
2016
, “
Closed-Loop Control of Product Properties in Metal Forming
,”
CIRP Ann.
,
65
(
2
), pp.
573
596
.
4.
Bäume
,
T.
,
Zorn
,
W.
,
Drossel
,
W.-G.
, and
Rupp
,
G.
,
2016
, “
Iterative Process Control and Sensor Evaluation for Deep Drawing Tools With Integrated Piezoelectric Actuators
,”
Manuf. Rev.
,
3
(
1
), pp.
26
33
.
5.
Brun
,
M.
,
Ghiotti
,
A.
,
Bruschi
,
S.
, and
Filippi
,
S.
,
2021
, “
Active Control of Blankholder in Sheet Metal Stamping
,”
Procedia CIRP
,
100
(
1
), pp.
151
156
.
6.
Siegert
,
K.
,
Ziegler
,
M.
, and
Wagner
,
S.
,
1997
, “
Closed Loop Control of the Friction Force—Deep Drawing Process
,”
J. Mater. Process. Technol.
,
71
(
1
), pp.
126
133
.
7.
Breitling
,
J.
,
Pfeiffer
,
B.
,
Altan
,
T.
, and
Siegert
,
K.
,
1997
, “
Process Control in Blanking
,”
J. Mater. Process. Technol.
,
71
(
1
), pp.
187
192
.
8.
Drossel
,
W.-G.
,
Zorn
,
W.
, and
Hamm
,
L.
,
2019
, “
Modular System to Measure and Control the Force Distribution in Deep Drawing Processes to Ensure Part Quality and Process Reliability
,”
CIRP Ann.
,
68
(
1
), pp.
309
312
.
9.
Barthau
,
M.
,
Liewald
,
M.
, and
Held
,
C.
,
2017
, “
Improved Process Robustness by Using Closed Loop Control in Deep Drawing Applications
,”
J. Phys. Conf. Ser.
,
896
(
1
), p.
012040
.
10.
Groche
,
P.
,
Breunig
,
A.
,
Chen
,
K.
,
Molitor
,
D. A.
,
Ha
,
J.
,
Kinsey
,
B. L.
, and
Korkolis
,
Y. P.
,
2022
, “
Effectiveness of Different Closed-Loop Control Strategies for Deep Drawing on Single-Acting 3D Servo Presses
,”
CIRP Ann. - Manuf. Technol.
,
71
(
1
), pp.
357
360
.
11.
Endelt
,
B.
,
Tommerup
,
S.
, and
Danckert
,
J.
,
2013
, “
A Novel Feedback Control System—Controlling the Material Flow in Deep Drawing Using Distributed Blank-Holder Force
,”
J. Mater. Process. Technol.
,
213
(
1
), pp.
36
50
.
12.
Groche
,
P.
,
Hohmann
,
J.
, and
Übelacker
,
D.
,
2019
, “
Overview and Comparison of Different Sensor Positions and Measuring Methods for the Process Force Measurement in Stamping Operations
,”
Measurement
,
135
(
1
), pp.
122
130
.
13.
Tsunekawa
,
K.
,
Kitai
,
S.
,
Morishita
,
H.
,
Urata
,
I.
, and
Hasebe
,
A.
,
2019
, Press Molding Method and Press Molding Apparatus, US2019084026A1.
14.
Kim
,
H.
,
Gu
,
J. C.
, and
Zoller
,
L.
,
2019
, “
Control of the Servo—Press in Stamping Considering the Variation of the Incoming Material Properties
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
651
(
1
), p.
012062
.
15.
Deutsches Institut für Normung e.V.
,
2020
,
Qualitätsverfolgungssystem für Flachstahlprodukte Mittels Barcode—Druck, Erfassung und Informationsverarbeitung, DIN EN 10372:2020-06
,
Beuth Verlag GmbH
,
Berlin
.
16.
Sigvant
,
M.
,
Pilthammar
,
J.
,
Gullberg
,
V.
,
Weingarten
,
J.
,
Butzhammer
,
P.
,
Tatipala
,
S.
,
Barlo
,
A.
, et al
,
2022
, “
Part Tracking and Model Driven Control in Stamping at Volvo Cars: First Steps of Implementation of EvoTrQ and Future Plans
,”
Proceedings of the 41st International Deep Drawing Research Group (IDDRG) Conference
,
Lorient, France
,
June 8
.
17.
Förste
,
A.
,
Schmid-Schirling
,
T.
, and
Körber
,
T.
,
2022
, “
Bauteile per Fingerabdruck im Sekundentakt Zurückverfolgen
,”
JOT J. fuer Oberflaechentechnik.
,
62
(
1
), pp.
8
10
.
18.
Wolter
,
B.
,
Dobmann
,
G.
, and
Fraunhofer
,
I. Z. F. P.
,
2006
, “
Micromagnetic Testing for Rolled Steel
,”
Proceedings of the European Conference on Non-Destructive Testing
, Vol.
9
,
Berlin, Germany
,
Sept. 25–29
.
19.
Hagenah
,
H.
,
Schulte
,
R.
,
Vogel
,
M.
,
Hermann
,
J.
,
Scharrer
,
H.
,
Lechner
,
M.
, and
Merklein
,
M.
,
2019
, “
4.0 in Metal Forming—Questions and Challenges
,”
Procedia CIRP
,
79
(
1
), pp.
649
654
.
20.
Osakada
,
K.
,
Mori
,
K.
,
Altan
,
T.
, and
Groche
,
P.
,
2011
, “
Mechanical Servo Press Technology for Metal Forming
,”
CIRP Ann.
,
60
(
2
), pp.
651
672
.
You do not currently have access to this content.