Abstract

High-entropy alloys (HEAs) are highly anticipated because of their superb properties in strength, hardness, wear resistance, etc. However, compared with numerous studies on the design and properties of HEAs, the machinability research of HEAs is extremely rare, which limits the application of HEAs. In this work, grinding experiments of (FeCoNi)86Al7Ti7 dual-phase HEA workpieces were carried out, and the results are analyzed from a general machinability perspective (the machining parameters’ effect on grinding force and surface roughness) to a more in-depth perspective, including grinding-induced changes in morphology and microstructure on the ground surface and subsurface. With scanning electron microscope (SEM) and electron backscatter diffraction (EBSD) information of subsurface, the deformation mechanisms have been studied, including the role of the second-phase (Ni2AlTi) in the grinding process, the material removal modes of the different phases, and the morphology of the nanoprecipitates in the matrix, based on the completely opposite properties of different phases in HEA. It is noticed that the hard and brittle property of the second phase brings support to the material, reduces the plastic deformation, and also makes its own removal brittle, while the plastic matrix experiences shear deformation in grinding, which makes the nanoprecipitates in it assume different morphologies. These detailed findings could be of help to understand the effect of grinding on material properties so as to improve the machining quality of this material.

References

1.
Yeh
,
J.-W.
,
Chen
,
S.-K.
,
Lin
,
S.-J.
,
Gan
,
J.-Y.
,
Chin
,
T.-S.
,
Shun
,
T.-T.
,
Tsau
,
C.-H.
, and
Chang
,
S.-Y.
,
2004
, “
Nanostructured High-Entropy Alloys With Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
,”
Adv. Eng. Mater.
,
6
(
5
), pp.
299
303
.
2.
Li
,
W.
,
Xie
,
D.
,
Li
,
D.
,
Zhang
,
Y.
,
Gao
,
Y.
, and
Liaw
,
P. K.
,
2021
, “
Mechanical Behavior of High-Entropy Alloys
,”
Prog. Mater. Sci.
,
118
, p.
100777
.
3.
Zhou
,
J.L.
,
Cheng
,
Y.H.
,
Chen
,
Y.X.
, and
Liang
,
X.B.
,
2022
, “
Composition Design and Preparation Process of Refractory High-Entropy Alloys: A Review
,”
Int. J. Refract. Met Hard Mater.
,
105
, p.
105836
.
4.
Chen
,
C.
,
Yuan
,
S.
,
Chen
,
J.
,
Wang
,
W.
,
Zhang
,
W.
,
Wei
,
R.
,
Wang
,
T.
,
Zhang
,
T.
,
Guan
,
S.
, and
Li
,
F.
,
2022
, “
A Co-Free Cr-Fe-Ni-Al-Si High Entropy Alloy With Outstanding Corrosion Resistance and High Hardness Fabricated by Laser Surface Melting
,”
Mater. Lett.
,
314
, p.
131882
.
5.
Moazzen
,
P.
,
Toroghinejad
,
M. R.
,
Zargar
,
T.
, and
Cavaliere
,
P.
,
2022
, “
Investigation of Hardness, Wear and Magnetic Properties of NiCoCrFeZrx HEA Prepared Through Mechanical Alloying and Spark Plasma Sintering
,”
J. Alloys Compd.
,
892
, p.
161924
.
6.
Kong
,
D.
,
Wang
,
W.
,
Zhang
,
T.
, and
Guo
,
J.
,
2022
, “
Effect of Superheating on Microstructure and Wear Resistance of Al1.8CrCuFeNi2 High-Entropy Alloy
,”
Mater. Lett.
,
311
, p.
131613
.
7.
Tsau
,
C.-H.
,
Lin
,
S.-X.
, and
Fang
,
C.-H.
,
2017
, “
Microstructures and Corrosion Behaviors of FeCoNi and CrFeCoNi Equimolar Alloys
,”
Mater. Chem. Phys.
,
186
, pp.
534
540
.
8.
Richter
,
T.
,
Schroepfer
,
D.
,
Rhode
,
M.
,
Boerner
,
A.
,
Neumann
,
R. S.
,
Schneider
,
M.
, and
Laplanche
,
G.
,
2022
, “
Influence of Machining on the Surface Integrity of High- and Medium-Entropy Alloys
,”
Mater. Chem. Phys.
,
275
, p.
125271
.
9.
Richter
,
T.
,
Schröpfer
,
D.
,
Rhode
,
M.
, and
Börner
,
A.
,
2020
, “
Influence of Modern Machining Processes on the Surface Integrity of High-Entropy Alloys
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
882
(
1
), p.
012016
.
10.
Litwa
,
P.
,
Hernandez-Nava
,
E.
,
Guan
,
D.
,
Goodall
,
R.
, and
Wika
,
K. K.
,
2021
, “
The Additive Manufacture Processing and Machinability of CrMnFeCoNi High Entropy Alloy
,”
Mater. Des.
,
198
, p.
109380
.
11.
Guo
,
J.
,
Goh
,
M.
,
Zhu
,
Z.
,
Lee
,
X.
,
Nai
,
M. L. S.
, and
Wei
,
J.
,
2018
, “
On the Machining of Selective Laser Melting CoCrFeMnNi High-Entropy Alloy
,”
Mater. Des.
,
153
, pp.
211
220
.
12.
Zhang
,
L.
,
Hashimoto
,
T.
, and
Yan
,
J.
,
2021
, “
Machinability Exploration for High-Entropy Alloy FeCrCoMnNi by Ultrasonic Vibration-Assisted Diamond Turning
,”
CIRP Ann.
,
70
(
1
), pp.
37
40
.
13.
Huang
,
Z.
,
Dai
,
Y.
,
Li
,
Z.
,
Zhang
,
G.
,
Chang
,
C.
, and
Ma
,
J.
,
2020
, “
Investigation on Surface Morphology and Crystalline Phase Deformation of Al80Li5Mg5Zn5Cu5 High-Entropy Alloy by Ultra-Precision Cutting
,”
Mater. Des.
,
186
, p.
108367
.
14.
Clauß
,
B.
,
Liborius
,
H.
,
Lindner
,
T.
,
Löbel
,
M.
,
Schubert
,
A.
, and
Lampke
,
T.
,
2020
, “
Influence of the Cutting Parameters on the Surface Properties in Turning of a Thermally Sprayed AlCoCrFeNiTi Coating
,”
Procedia CIRP
,
87
, pp.
19
24
.
15.
Liu
,
Y.
,
Gong
,
Y.
,
Zhang
,
H.
,
Sun
,
Y.
, and
Cai
,
M.
,
2018
, “
Experimental Investigations Into Grinding Characteristics of High Entropy Alloys (HEAs) Using Micro Grinding
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
4477
4499
.
16.
Günen
,
A.
,
Ceritbinmez
,
F.
,
Patel
,
K.
,
Akhtar
,
M. A.
,
Mukherjee
,
S.
,
Kanca
,
E.
, and
Karakas
,
M. S.
,
2022
, “
WEDM Machining of MoNbTaTiZr Refractory High Entropy Alloy
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
547
559
.
17.
Klink
,
A.
,
Harst
,
S.
,
Olivier
,
M.
,
Tombul
,
U.
, and
Bergs
,
T.
,
2020
, “
High Entropy Alloy Machining by EDM and ECM
,”
Procedia CIRP
,
95
, pp.
178
182
.
18.
Cantor
,
B.
,
Chang
,
I. T. H.
,
Knight
,
P.
, and
Vincent
,
A. J. B.
,
2004
, “
Microstructural Development in Equiatomic Multicomponent Alloys
,”
Mater. Sci. Eng. A
,
375–377
, pp.
213
218
.
19.
Otto
,
F.
,
Yang
,
Y.
,
Bei
,
H.
, and
George
,
E. P.
,
2013
, “
Relative Effects of Enthalpy and Entropy on the Phase Stability of Equiatomic High-Entropy Alloys
,”
Acta Mater.
,
61
(
7
), pp.
2628
2638
.
20.
Diao
,
H. Y.
,
Feng
,
R.
,
Dahmen
,
K. A.
, and
Liaw
,
P. K.
,
2017
, “
Fundamental Deformation Behavior in High-Entropy Alloys: An Overview
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
5
), pp.
252
266
.
21.
Zhao
,
L.
,
Jiang
,
L.
,
Yang
,
L. X.
,
Wang
,
H.
,
Zhang
,
W. Y.
,
Ji
,
G. Y.
,
Zhou
,
X.
, et al
,
2022
, “
High Throughput Synthesis Enabled Exploration of CoCrFeNi-Based High Entropy Alloys
,”
J. Mater. Sci. Technol.
,
110
, pp.
269
282
.
22.
Xu
,
Q.
,
Chen
,
D.
,
Tan
,
C.
,
Bi
,
X.
,
Wang
,
Q.
,
Cui
,
H.
,
Zhang
,
S.
, and
Chen
,
R.
,
2021
, “
NbMoTiVSix Refractory High Entropy Alloys Strengthened by Forming BCC Phase and Silicide Eutectic Structure
,”
J. Mater. Sci. Technol.
,
60
, pp.
1
7
.
23.
Nassar
,
A.
,
Mullis
,
A.
,
Cochrane
,
R.
,
Aslam
,
Z.
,
Micklethwaite
,
S.
, and
Cao
,
L.
,
2022
, “
Rapid Solidification of AlCoCrFeNi2.1 High-Entropy Alloy
,”
J. Alloys Compd.
,
900
, p.
163350
.
24.
Peng
,
P.
,
Li
,
S.
,
Chen
,
W.
,
Xu
,
Y.
,
Zhang
,
X.
,
Ma
,
Z.
, and
Wang
,
J.
,
2022
, “
Phase Selection and Mechanical Properties of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
,”
J. Alloys Compd.
,
898
, p.
162907
.
25.
Wang
,
L.
,
Yao
,
C.
,
Shen
,
J.
,
Zhang
,
Y.
,
Wang
,
T.
,
Ge
,
Y.
,
Gao
,
L.
, and
Zhang
,
G.
,
2020
, “
Microstructures and Room Temperature Tensile Properties of As-Cast and Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
,”
Intermetallics
,
118
, p.
106681
.
26.
Zheng
,
H.
,
Chen
,
R.
,
Qin
,
G.
,
Li
,
X.
,
Su
,
Y.
,
Ding
,
H.
,
Guo
,
J.
, and
Fu
,
H.
,
2019
, “
Phase Separation of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy During Directional Solidification and Their Effect on Tensile Properties
,”
Intermetallics
,
113
, p.
106569
.
27.
Wang
,
Q.
,
Zeng
,
L.
,
Gao
,
T.
,
Du
,
H.
, and
Liu
,
X.
,
2021
, “
On the Room-Temperature Tensile Deformation Behavior of a Cast Dual-Phase High-Entropy Alloy CrFeCoNiAl0.7
,”
J. Mater. Sci. Technol.
,
87
, pp.
29
38
.
28.
Fu
,
A.
,
Liu
,
B.
,
Xu
,
S.
,
Huang
,
J.
,
Zhang
,
Y.
,
Cao
,
Y.
, and
Liu
,
Y.
,
2021
, “
Mechanical Properties and Microstructural Evolution of a Novel (FeCoNi)86.93Al6.17Ti6.9 Medium Entropy Alloy Fabricated via Powder Metallurgy Technique
,”
J. Alloys Compd.
,
860
, p.
158460
.
29.
Liang
,
C.
,
Wang
,
C.
,
Zhang
,
K.
,
Tan
,
H.
,
Liang
,
M.
,
Xie
,
Y.
,
Liu
,
W.
,
Yang
,
J.
, and
Zhou
,
S.
,
2022
, “
Mechanical and Tribological Properties of (FeCoNi)88-x(AlTi)12Mox High-Entropy Alloys
,”
Int. J. Refract. Met. Hard Mater.
,
105
, p.
105845
.
30.
Zhang
,
X. K.
,
Chou
,
T. H.
,
Li
,
W. P.
,
Wang
,
Y. N.
,
Huang
,
J. C.
, and
Cheng
,
L.
,
2021
, “
Microstructure and Mechanical Properties of (FeCoNi)100−x(NiAl)x Eutectic Multi-Principal Element Alloys
,”
J. Alloys Compd.
,
862
, p.
158349
.
31.
Qi
,
Y.
,
Wu
,
Y.
,
Cao
,
T.
,
He
,
L.
,
Jiang
,
F.
, and
Sun
,
J.
,
2020
, “
L21-Strengthened Face-Centered Cubic High-Entropy Alloy With High Strength and Ductility
,”
Mater. Sci. Eng. A
,
797
, p.
140056
.
32.
Zhuang
,
Y. X.
,
Xue
,
H. D.
,
Chen
,
Z. Y.
,
Hu
,
Z. Y.
, and
He
,
J. C.
,
2013
, “
Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys
,”
Mater. Sci. Eng. A
,
572
, pp.
30
35
.
33.
Wu
,
Z.
,
Chen
,
M.
,
Li
,
B.
,
Lv
,
M.
,
Zheng
,
R.
,
Yang
,
Y.
,
Tan
,
X.
, and
Xu
,
H.
,
2022
, “
A Novel Formation and Structure Evolution of Cu-Rich Precipitates in FeCoNiCuAl High-Entropy Alloy
,”
Mater. Charact.
,
191
, p.
112161
.
34.
Dang
,
J.
,
Zhang
,
H.
,
An
,
Q.
,
Ming
,
W.
, and
Chen
,
M.
,
2021
, “
On the Microstructural Evolution Pattern of 300 M Steel Subjected to Surface Cryogenic Grinding Treatment
,”
J. Manuf. Process.
,
68
, pp.
169
185
.
35.
Liu
,
Y.
,
Huang
,
Y.
,
Guan
,
M.
,
Meng
,
X.
, and
Xie
,
Y.
,
2020
, “
Grain Refinement in Surficial Cryogenic Grinding
,”
Metall. Mater. Trans. A.
,
51
(
7
), pp.
3349
3353
.
36.
Guo
,
S.
,
Zhang
,
J.
,
Jiang
,
Q.
, and
Zhang
,
B.
,
2022
, “
Surface Integrity in High-Speed Grinding of Al6061T6 Alloy
,”
CIRP Ann.
,
71
(
1
), pp.
281
284
.
37.
Ling
,
L.
,
Luo
,
L.
, and
Liu
,
F.
,
2021
, “
Effects of Grinding Treatment on Surface Properties and Deformation Microstructure in Alloy 304L
,”
Surf. Coat. Technol.
,
408
, p.
126850
.
38.
Zhang
,
H.
,
Li
,
C.
,
Yao
,
G.
,
Shi
,
Y.
, and
Zhang
,
Y.
,
2022
, “
Investigation of Surface Quality, Microstructure, Deformation Mechanism, and Fatigue Performance of Additively Manufactured 304L Stainless Steel Using Grinding
,”
Int. J. Fatigue
,
160
, p.
106838
.
39.
Yang
,
T.
,
Zhao
,
Y. L.
,
Tong
,
Y.
,
Jiao
,
Z. B.
,
Wei
,
J.
,
Cai
,
J. X.
,
Han
,
X. D.
, et al
,
2018
, “
Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys
,”
Science
,
362
(
6417
), pp.
933
937
.
40.
Wang
,
L.
,
Wang
,
J.
,
Niu
,
H.
,
Yang
,
G.
,
Yang
,
L.
,
Xu
,
M.
, and
Yi
,
J.
,
2022
, “
BCC + L21 Dual-Phase Cu40Al20Ti20V20 Near-Eutectic High-Entropy Alloy With a Combination of Strength and Plasticity
,”
J. Alloys Compd.
,
908
, p.
164683
.
41.
Zhang
,
H.
,
Wang
,
X. H.
,
Li
,
Z. J.
,
Liu
,
M. Y.
, and
Zhou
,
Y. C.
,
2014
, “
A Novel Ni2AlTi-Containing Composite With Excellent Wear Resistance and Anomalous Flexural Strength
,”
Mater. Sci. Eng. A
,
597
, pp.
70
74
.
42.
Ding
,
H.
,
Yang
,
J.
,
Wang
,
W.
,
Guo
,
J.
, and
Liu
,
Q.
,
2022
, “
Characterization and Formation Mechanisms of Rail Chips From Facing Grinding by Abrasive Wheel
,”
J. Manuf. Process.
,
73
, pp.
544
554
.
43.
Singh
,
A.
,
Anand
,
A.
,
Singh
,
J.
,
Singh
,
M.
,
Kumar
,
K.
,
Bhandari
,
P.
,
Srivastava
,
V. K.
,
Singh
,
A.
, and
Sinha
,
M. K.
,
2022
, “
Suitability of Turning and Grinding Steel Chips to Synthesize Metal Matrix Composite via Powder Metallurgy Route
,”
Mater. Today: Proc.
,
69
, pp.
215
219
.
44.
He
,
J. Y.
,
Wang
,
H.
,
Huang
,
H. L.
,
Xu
,
X. D.
,
Chen
,
M. W.
,
Wu
,
Y.
,
Liu
,
X. J.
,
Nieh
,
T. G.
,
An
,
K.
, and
Lu
,
Z. P.
,
2016
, “
A Precipitation-Hardened High-Entropy Alloy With Outstanding Tensile Properties
,”
Acta Mater.
,
102
, pp.
187
196
.
45.
Jiao
,
Z. B.
,
Luan
,
J. H.
,
Miller
,
M. K.
,
Yu
,
C. Y.
,
Liu
,
Y.
, and
Liu
,
C. T.
,
2016
, “
Precipitate Transformation From NiAl-Type to Ni2AlMn-Type and Its Influence on the Mechanical Properties of High-Strength Steels
,”
Acta Mater.
,
110
, pp.
31
43
.
46.
Gladman
,
T.
,
1999
, “
Precipitation Hardening in Metals
,”
Mater. Sci. Technol.
,
15
(
1
), pp.
30
36
.
47.
Wu
,
G.
,
Chan
,
K.-C.
,
Zhu
,
L.
,
Sun
,
L.
, and
Lu
,
J.
,
2017
, “
Dual-Phase Nanostructuring as a Route to High-Strength Magnesium Alloys
,”
Nature
,
545
(
7652
), pp.
80
83
.
You do not currently have access to this content.