Abstract

Three-dimensional printing of hydrogel constructs containing algae cells, also known as green bioprinting, has many potential applications. Its feasibility has been demonstrated for removing metal contaminants in water and tissue engineering. However, in reported studies on green bioprinting so far, shape fidelity was either not investigated or poor. This paper reports a study to apply layer-by-layer photo-crosslinking in extrusion-based 3D printing of constructs using gelatin methacryloyl (GelMA) bioink containing Chlamydomonas reinhardtii algae cells. Shape fidelity and cell viability are compared between constructs printed by applying layer-by-layer photo-crosslinking and those printed by applying once-post-printing photo-crosslinking. Comparisons of shape fidelity are also made with alginate-methylcellulose constructs printed by applying ionic-crosslinking. Results show that GelMA constructs printed by applying layer-by-layer photo-crosslinking have the highest shape fidelity among all printed constructs, and about three-quarters of the algae cells in all printed GelMA constructs are alive four days post-printing. There are no significant differences in cell viability between the GelMA constructs printed by applying layer-by-layer photo-crosslinking and the GelMA constructs printed by applying once-post-printing photo-crosslinking.

References

1.
Lode
,
A.
,
Krujatz
,
F.
,
Brüggemeier
,
S.
,
Quade
,
M.
,
Schütz
,
K.
,
Knaack
,
S.
,
Weber
,
J.
,
Bley
,
T.
, and
Gelinsky
,
M.
,
2015
, “
Green Bioprinting: Fabrication of Photosynthetic Algae-Laden Hydrogel Scaffolds for Biotechnological and Medical Applications
,”
Eng. Life Sci.
,
15
(
2
), pp.
177
183
.
2.
Seidel
,
J.
,
Ahlfeld
,
T.
,
Adolph
,
M.
,
Kümmritz
,
S.
,
Steingroewer
,
J.
,
Krujatz
,
F.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Lode
,
A.
,
2017
, “
Green Bioprinting: Extrusion-Based Fabrication of Plant Cell-Laden Biopolymer Hydrogel Scaffolds
,”
Biofabrication
,
9
(
4
), p.
045011
.
3.
Thakare
,
K.
,
Jerpseth
,
L.
,
Pei
,
Z.
,
Tomlin
,
B.
, and
Qin
,
H.
,
2021
, “
Three-Dimensional Printing of Hydrogel Filters Containing Algae Cells for Copper Removal From Contaminated Water
,”
ASME J. Manuf. Sci. Eng.
,
143
(
10
), p.
104502
.
4.
Adeniyi
,
O. M.
,
Azimov
,
U.
, and
Burluka
,
A.
,
2018
, “
Algae Biofuel: Current Status and Future Applications
,”
Renew. Sustain. Energy Rev.
,
90
, pp.
316
335
.
5.
Menetrez
,
M. Y.
,
2012
, “
An Overview of Algae Biofuel Production and Potential Environmental Impact
,”
Environ. Sci. Technol.
,
46
(
13
), pp.
7073
7085
.
6.
Krujatz
,
F.
,
Lode
,
A.
,
Brüggemeier
,
S.
,
Schütz
,
K.
,
Kramer
,
J.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Weber
,
J.
,
2015
, “
Green Bioprinting: Viability and Growth Analysis of Microalgae Immobilized in 3D-Plotted Hydrogels Versus Suspension Cultures
,”
Eng. Life Sci.
,
15
(
7
), pp.
678
688
.
7.
Lepowsky
,
E.
,
Muradoglu
,
M.
, and
Tasoglu
,
S.
,
2018
, “
Towards Preserving Post-Printing Cell Viability and Improving the Resolution: Past, Present, and Future of 3D Bioprinting Theory
,”
Bioprinting
,
11
, p.
e00034
.
8.
Di Giuseppe
,
M.
,
Law
,
N.
,
Webb
,
B.
,
Macrae
,
R. A.
,
Liew
,
L. J.
,
Sercombe
,
T. B.
,
Dilley
,
R. J.
, and
Doyle
,
B. J.
,
2018
, “
Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
150
157
.
9.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotechnol. J.
,
4
(
8
), pp.
1168
1177
.
10.
Stoddart
,
M. J.
,
2011
,
Mammalian Cell Viability
, 1st ed.,
Humana Press
,
Totowa, NJ
, pp.
1
6
.
11.
Thakare
,
K.
,
Jerpseth
,
L.
,
Qin
,
H.
, and
Pei
,
Z.
,
2021
, “
Bioprinting Using Algae: Effects of Extrusion Pressure and Needle Diameter on Cell Quantity in Printed Samples
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
014501
.
12.
GhavamiNejad
,
A.
,
Ashammakhi
,
N.
,
Wu
,
X. Y.
, and
Khademhosseini
,
A.
,
2020
, “
Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels
,”
Small
,
16
(
35
), p.
2002931
.
13.
Ozbolat
,
I. T.
,
2015
, “
Bioprinting Scale-Up Tissue and Organ Constructs for Transplantation
,”
Trends Biotechnol.
,
33
(
7
), pp.
395
400
.
14.
Gurkan
,
U. A.
,
El Assal
,
R.
,
Yildiz
,
S. E.
,
Sung
,
Y.
,
Trachtenberg
,
A. J.
,
Kuo
,
W. P.
, and
Demirci
,
U.
,
2014
, “
Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets
,”
Mol. Pharm.
,
11
(
7
), pp.
2151
2159
.
15.
Lim
,
K. S.
,
Schon
,
B. S.
,
Mekhileri
,
N. V.
,
Brown
,
G. C.
,
Chia
,
C. M.
,
Prabakar
,
S.
,
Hooper
,
G. J.
, and
Woodfield
,
T. B.
,
2016
, “
New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1752
1762
.
16.
Trachtenberg
,
J. E.
,
Placone
,
J. K.
,
Smith
,
B. T.
,
Piard
,
C. M.
,
Santoro
,
M.
,
Scott
,
D. W.
,
Fisher
,
J. P.
, and
Mikos
,
A. G.
,
2016
, “
Extrusion-Based 3D Printing of Poly (Propylene Fumarate) in a Full-Factorial Design
,”
ACS Biomater. Sci. Eng.
,
2
(
10
), pp.
1771
1780
.
17.
Trachtenberg
,
J. E.
,
Santoro
,
M.
,
Williams
III,
C.
,
Piard
,
C. M.
,
Smith
,
B. T.
,
Placone
,
J. K.
,
Menegaz
,
B. A.
,
Molina
,
E. R.
,
Lamhamedi-Cherradi
,
S.-E.
, and
Ludwig
,
J. A.
,
2018
, “
Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion
,”
ACS Biomater. Sci. Eng.
,
4
(
2
), pp.
347
356
.
18.
Ozbolat
,
I. T.
,
2016
,
3D Bioprinting: Fundamentals, Principles and Applications
,
Academic Press
,
San Diego, CA
.
19.
Knowlton
,
S.
,
Yenilmez
,
B.
,
Anand
,
S.
, and
Tasoglu
,
S.
,
2017
, “
Photocrosslinking-Based Bioprinting: Examining Crosslinking Schemes
,”
Bioprinting
,
5
, pp.
10
18
.
20.
Zhuang
,
P.
,
Ng
,
W. L.
,
An
,
J.
,
Chua
,
C. K.
, and
Tan
,
L. P.
,
2019
, “
Layer-by-Layer Ultraviolet Assisted Extrusion-Based (UAE) Bioprinting of Hydrogel Constructs With High Aspect Ratio for Soft Tissue Engineering Applications
,”
PLoS One
,
14
(
6
), p.
e0216776
.
21.
Wang
,
Y.
,
Shu
,
Z.
, and
Jian
,
W.
,
2021
, “
Photo-Crosslinkable Hydrogel and Its Biological Applications
,”
Chin. Chem. Lett.
,
32
(
5
), pp.
1603
1614
.
22.
Mitra
,
M.
,
Nguyen
,
K. M.-A.-K.
,
Box
,
T. W.
,
Gilpin
,
J. S.
,
Hamby
,
S. R.
,
Berry
,
T. L.
, and
Duckett
,
E. H.
,
2020
, “
Isolation and Characterization of a Novel Bacterial Strain From a Tris-Acetate-Phosphate Agar Medium Plate of the Green Micro-Alga Chlamydomonas reinhardtii That Can Utilize Common Environmental Pollutants as a Carbon Source
,”
F1000Res.
9
, p.
656
.
23.
Riss
,
T. L.
,
Moravec
,
R. A.
,
Niles
,
A. L.
,
Duellman
,
S.
,
Benink
,
H. A.
,
Worzella
,
T. J.
, and
Minor
,
L.
,
2013
,
Cell Viability Assays, Assay Guidance Manual
, 1st ed.,
Eli Lilly & Company and the National Center for Advancing Translational Sciences
,
Bethesda, MD
.
24.
Moheimani
,
N. R.
,
Borowitzka
,
M. A.
,
Isdepsky
,
A.
, and
Sing
,
S. F.
,
2013
, “Standard Methods for Measuring Growth of Algae and Their Composition,”
Algae for Biofuels and Energy
,
N. R.
Moheimani
, and
M. A.
Borowitzka
, eds.,
Springer
,
Dordrecht
, pp.
265
284
.
You do not currently have access to this content.