Abstract

Laser powder bed fusion (L-PBF) additive manufacturing (AM) is an effective method of fabricating nickel–titanium (NiTi) shape memory alloys (SMAs) with complex geometries, unique functional properties, and tailored material compositions. However, with the increase of Ni content in NiTi powder feedstock, the ability to produce high-quality parts is notably reduced due to the emergence of macroscopic defects such as warpage, elevated edge/corner, delamination, and excessive surface roughness. This study explores the printability of a nickel-rich NiTi powder, where printability refers to the ability to fabricate macro-defect-free parts. Specifically, single track experiments were first conducted to select key processing parameter settings for cubic specimen fabrication. Machine learning classification techniques were implemented to predict the printable space. The reliability of the predicted printable space was verified by further cubic specimens fabrication, and the relationship between processing parameters and potential macro-defect modes was investigated. Results indicated that laser power was critical to the printability of high Ni content NiTi powder. In the low laser power setting (P < 100 W), the printable space was relatively wider with delamination as the main macro-defect mode. In the sub-high laser power condition (100 W ≤ P ≤ 200 W), the printable space was narrowed to a low hatch spacing region with macro-defects of warpage, elevated edge/corner, and delamination happened at different scanning speeds and hatch spacing combinations. The rough surface defect emerged when further increasing the laser power (P > 200 W), leading to a further narrowed printable space.

References

1.
Otsuka
,
K.
, and
Wayman
,
C. M.
,
1999
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge
.
2.
Shaw
,
J. A.
, and
Kyriakides
,
S.
,
1995
, “
Thermomechanical Aspects of NiTi
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1243
1281
.
3.
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2007
, “
Aerospace Applications of Shape Memory Alloys
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
221
(
4
), pp.
535
552
.
4.
Stoeckel
,
D.
,
1990
, “
Shape Memory Actuators for Automotive Applications
,”
Mater. Des.
,
11
(
6
), pp.
302
307
.
5.
Petrini
,
L.
, and
Migliavacca
,
F.
,
2011
, “
Biomedical Applications of Shape Memory Alloys
,”
J. Metall.
,
2011
, pp.
1
15
.
6.
Elahinia
,
M. H.
,
Hashemi
,
M.
,
Tabesh
,
M.
, and
Bhaduri
,
S. B.
,
2012
, “
Manufacturing and Processing of NiTi Implants: A Review
,”
Prog. Mater. Sci.
,
57
(
5
), pp.
911
946
.
7.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
8.
Nematollahi
,
M.
,
Mehrabi
,
R.
,
Callejas
,
M. A.
,
Elahinia
,
H.
, and
Elahinia
,
M.
,
2018
, “
A Two-Way Architectural Actuator Using NiTi se Wire and SME Spring, in: Active and Passive Smart Structures and Integrated Systems XII
,”
Int. Soc. Opt. Photonics
,
10595
, pp.
621
629
.
9.
Lin
,
H.
,
Lin
,
K.
, and
Chen
,
Y.
,
2000
, “
A Study on the Machining Characteristics of Tini Shape Memory Alloys
,”
J. Mater. Process. Technol.
,
105
(
3
), pp.
327
332
.
10.
Kaya
,
E.
, and
Kaya
,
I.
,
2019
, “
A Review on Machining of NiTi Shape Memory Alloys: The Process and Post Process Perspective
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5
), pp.
2045
2087
.
11.
Manjaiah
,
M.
,
Narendranath
,
S.
,
Basavarajappa
,
S.
, and
Gaitonde
,
V.
,
2014
, “
Wire Electric Discharge Machining Characteristics of Titanium Nickel Shape Memory Alloy
,”
Trans. Nonferrous Met. Soc. China
,
24
(
10
), pp.
3201
3209
.
12.
Guo
,
Y.
,
Klink
,
A.
,
Fu
,
C.
, and
Snyder
,
J.
,
2013
, “
Machinability and Surface Integrity of Nitinol Shape Memory Alloy
,”
CIRP Ann.
,
62
(
1
), pp.
83
86
.
13.
Elahinia
,
M.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Amerinatanzi
,
A.
,
Bimber
,
B. A.
, and
Hamilton
,
R. F.
,
2016
, “
Fabrication of NiTi Through Additive Manufacturing: A Review
,”
Prog. Mater. Sci.
,
83
, pp.
630
663
.
14.
Farber
,
E.
,
Zhu
,
J.-N.
,
Popovich
,
A.
, and
Popovich
,
V.
,
2020
, “
A Review of NiTi Shape Memory Alloy as a Smart Material Produced by Additive Manufacturing
,”
Mater. Today: Proc.
,
30
(
3
), pp.
761
767
.
15.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
16.
Sing
,
S.
, and
Yeong
,
W.
,
2020
, “
Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments
,”
Virtual Phys. Prototyp.
,
15
(
3
), pp.
359
370
.
17.
Oliveira
,
J. P.
,
LaLonde
,
A.
, and
Ma
,
J.
,
2020
, “
Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Mater. Des.
,
193
, p.
108762
.
18.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
On the Printability and Transformation Behavior of Nickel-Titanium Shape Memory Alloys Fabricated Using Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Manuf. Processes
,
35
, pp.
672
680
.
19.
Xue
,
L.
,
Atli
,
K.
,
Picak
,
S.
,
Zhang
,
C.
,
Zhang
,
B.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2021
, “
Controlling Martensitic Transformation Characteristics in Defect-Free NiTi Shape Memory Alloys Fabricated Using Laser Powder Bed Fusion and a Process Optimization Framework
,”
Acta Mater.
,
215
, p.
117017
.
20.
Zhu
,
J.-N.
,
Borisov
,
E.
,
Liang
,
X.
,
Farber
,
E.
,
Hermans
,
M.
, and
Popovich
,
V.
,
2021
, “
Predictive Analytical Modelling and Experimental Validation of Processing Maps in Additive Manufacturing of Nitinol Alloys
,”
Addit. Manuf.
,
38
, p.
101802
.
21.
Mehrpouya
,
M.
,
Gisario
,
A.
,
Rahimzadeh
,
A.
,
Nematollahi
,
M.
,
Baghbaderani
,
K. S.
, and
Elahinia
,
M.
,
2019
, “
A Prediction Model for Finding the Optimal Laser Parameters in Additive Manufacturing of NiTi Shape Memory Alloy
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4691
4699
.
22.
Saedi
,
S.
,
Moghaddam
,
N. S.
,
Amerinatanzi
,
A.
,
Elahinia
,
M.
, and
Karaca
,
H. E.
,
2018
, “
On the Effects of Selective Laser Melting Process Parameters on Microstructure and Thermomechanical Response of Ni-Rich NiTi
,”
Acta Mater.
,
144
, pp.
552
560
.
23.
Zhang
,
Q.
,
Hao
,
S.
,
Liu
,
Y.
,
Xiong
,
Z.
,
Guo
,
W.
,
Yang
,
Y.
,
Ren
,
Y.
,
Cui
,
L.
,
Ren
,
L.
, and
Zhang
,
Z.
,
2020
, “
The Microstructure of a Selective Laser Melting (SLM)-Fabricated NiTi Shape Memory Alloy With Superior Tensile Property and Shape Memory Recoverability
,”
Appl. Mater. Today
,
19
, p.
100547
.
24.
Dadbakhsh
,
S.
,
Vrancken
,
B.
,
Kruth
,
J.-P.
,
Luyten
,
J.
, and
Van Humbeeck
,
J.
,
2016
, “
Texture and Anisotropy in Selective Laser Melting of NiTi Alloy
,”
Mater. Sci. Eng. A
,
650
, pp.
225
232
.
25.
Saedi
,
S.
,
Turabi
,
A. S.
,
Andani
,
M. T.
,
Moghaddam
,
N. S.
,
Elahinia
,
M.
, and
Karaca
,
H. E.
,
2017
, “
Texture, Aging, and Superelasticity of Selective Laser Melting Fabricated Ni-Rich NiTi Alloys
,”
Mater. Sci. Eng. A
,
686
, pp.
1
10
.
26.
Wang
,
X.
,
Yu
,
J.
,
Liu
,
J.
,
Chen
,
L.
,
Yang
,
Q.
,
Wei
,
H.
,
Sun
,
J.
, et al
,
2020
, “
Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting
,”
Addit. Manuf.
,
36
, p.
101545
.
27.
Moghaddam
,
N. S.
,
Saghaian
,
S. E.
,
Amerinatanzi
,
A.
,
Ibrahim
,
H.
,
Li
,
P.
,
Toker
,
G. P.
,
Karaca
,
H. E.
, and
Elahinia
,
M.
,
2018
, “
Anisotropic Tensile and Actuation Properties of NiTi Fabricated With Selective Laser Melting
,”
Mater. Sci. Eng. A
,
724
, pp.
220
230
.
28.
Zhao
,
C.
,
Liang
,
H.
,
Luo
,
S.
,
Yang
,
J.
, and
Wang
,
Z.
,
2020
, “
The Effect of Energy Input on Reaction, Phase Transition and Shape Memory Effect of NiTi Alloy by Selective Laser Melting
,”
J. Alloys Compd.
,
817
, p.
153288
.
29.
Yang
,
Y.
,
Zhan
,
J.
,
Sun
,
Z.
,
Wang
,
H.
,
Lin
,
J.
,
Liu
,
Y.
, and
Zhang
,
L.
,
2019
, “
Evolution of Functional Properties Realized by Increasing Laser Scanning Speed for the Selective Laser Melting Fabricated NiTi Alloy
,”
J. Alloys Compd.
,
804
, pp.
220
229
.
30.
Saedi
,
S.
,
Saghaian
,
S. E.
,
Jahadakbar
,
A.
,
Moghaddam
,
N. S.
,
Andani
,
M. T.
,
Saghaian
,
S. M.
,
Lu
,
Y. C.
,
Elahinia
,
M.
, and
Karaca
,
H. E.
,
2018
, “
Shape Memory Response of Porous NiTi Shape Memory Alloys Fabricated by Selective Laser Melting
,”
J. Mater. Sci.: Mater. Med.
,
29
(
4
), pp.
1
12
.
31.
Andani
,
M. T.
,
Saedi
,
S.
,
Turabi
,
A. S.
,
Karamooz
,
M.
,
Haberland
,
C.
,
Karaca
,
H. E.
, and
Elahinia
,
M.
,
2017
, “
Mechanical and Shape Memory Properties of Porous Ni50. 1Ti49. 9 Alloys Manufactured by Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
224
231
.
32.
Gan
,
J.
,
Duan
,
L.
,
Li
,
F.
,
Che
,
Y.
,
Zhou
,
Y.
,
Wen
,
S.
, and
Yan
,
C.
,
2021
, “
Effect of Laser Energy Density on the Evolution of Ni4Ti3 Precipitate and Property of NiTi Shape Memory Alloys Prepared by Selective Laser Melting
,”
J. Alloys Compd.
,
869
, p.
159338
.
33.
Saedi
,
S.
,
Turabi
,
A. S.
,
Andani
,
M. T.
,
Haberland
,
C.
,
Karaca
,
H.
, and
Elahinia
,
M.
,
2016
, “
The Influence of Heat Treatment on the Thermomechanical Response of Ni-Rich NiTi Alloys Manufactured by Selective Laser Melting
,”
J. Alloys Compd.
,
677
, pp.
204
210
.
34.
Khoo
,
Z. X.
,
An
,
J.
,
Chua
,
C. K.
,
Shen
,
Y. F.
,
Kuo
,
C. N.
, and
Liu
,
Y.
,
2019
, “
Effect of Heat Treatment on Repetitively Scanned slm NiTi Shape Memory Alloy
,”
Materials
,
12
(
1
), p.
77
.
35.
Chen
,
X.
,
Liu
,
K.
,
Guo
,
W.
,
Gangil
,
N.
,
Siddiquee
,
A. N.
, and
Konovalov
,
S.
,
2019
, “
The Fabrication of NiTi Shape Memory Alloy by Selective Laser Melting: A Review
,”
Rapid Prototyp. J.
,
25
(
8
), pp.
1421
1432
.
36.
Safaei
,
K.
,
Abedi
,
H.
,
Nematollahi
,
M.
,
Kordizadeh
,
F.
,
Dabbaghi
,
H.
,
Bayati
,
P.
,
Javanbakht
,
R.
,
Jahadakbar
,
A.
,
Elahinia
,
M.
, and
Poorganji
,
B.
,
2021
, “
Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem
,”
JOM
,
73
(
12
), pp.
3771
3786
.
37.
Frenzel
,
J.
,
George
,
E. P.
,
Dlouhy
,
A.
,
Somsen
,
C.
,
Wagner
,
M.-X.
, and
Eggeler
,
G.
,
2010
, “
Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys
,”
Acta Mater.
,
58
(
9
), pp.
3444
3458
.
38.
Shi
,
X.
,
Cui
,
L.
,
Jiang
,
D.
,
Yu
,
C.
,
Guo
,
F.
,
Yu
,
M.
,
Ren
,
Y.
, and
Liu
,
Y.
,
2014
, “
Grain Size Effect on the r-Phase Transformation of Nanocrystalline NiTi Shape Memory Alloys
,”
J. Mater. Sci.
,
49
(
13
), pp.
4643
4647
.
39.
Haberland
,
C.
,
Elahinia
,
M.
,
Walker
,
J. M.
,
Meier
,
H.
, and
Frenzel
,
J.
,
2014
, “
On the Development of High Quality NiTi Shape Memory and Pseudoelastic Parts by Additive Manufacturing
,”
Smart Mater. Struct.
,
23
(
10
), p.
104002
.
40.
Dadbakhsh
,
S.
,
Speirs
,
M.
,
Kruth
,
J.-P.
,
Schrooten
,
J.
,
Luyten
,
J.
, and
Van Humbeeck
,
J.
,
2014
, “
Effect of SLM Parameters on Transformation Temperatures of Shape Memory Nickel Titanium Parts
,”
Adv. Eng. Mater.
,
16
(
9
), pp.
1140
1146
.
41.
Bormann
,
T.
,
Müller
,
B.
,
Schinhammer
,
M.
,
Kessler
,
A.
,
Thalmann
,
P.
, and
de Wild
,
M.
,
2014
, “
Microstructure of Selective Laser Melted Nickel–Titanium
,”
Mater. Charact.
,
94
, pp.
189
202
.
42.
Franco
,
B.
,
Ma
,
J.
,
Loveall
,
B.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Liu
,
J.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2017
, “
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts
,”
Sci. Rep.
,
7
(
1
), pp.
1
12
.
43.
Ma
,
J.
,
Franco
,
B.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Johnson
,
L.
,
Liu
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2017
, “
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
44.
Eagar
,
T. W.
,
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
45.
Seede
,
R.
,
Shoukr
,
D.
,
Zhang
,
B.
,
Whitt
,
A.
,
Gibbons
,
S.
,
Flater
,
P.
,
Elwany
,
A.
,
Arroyave
,
R.
, and
Karaman
,
I.
,
2020
, “
An Ultra-High Strength Martensitic Steel Fabricated Using Selective Laser Melting Additive Manufacturing: Densification, Microstructure, and Mechanical Properties
,”
Acta Mater.
,
186
, pp.
199
214
.
46.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, and
Smurov
,
I.
,
2010
, “
Single Track Formation in Selective Laser Melting of Metal Powders
,”
J. Mater. Process. Technol.
,
210
(
12
), pp.
1624
1631
.
47.
Gu
,
D.
, and
Shen
,
Y.
,
2009
, “
Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods
,”
Mater. Des.
,
30
(
8
), pp.
2903
2910
.
48.
Sun
,
S.-H.
,
Ishimoto
,
T.
,
Hagihara
,
K.
,
Tsutsumi
,
Y.
,
Hanawa
,
T.
, and
Nakano
,
T.
,
2019
, “
Excellent Mechanical and Corrosion Properties of Austenitic Stainless Steel With a Unique Crystallographic Lamellar Microstructure via Selective Laser Melting
,”
Scr. Mater.
,
159
, pp.
89
93
.
49.
Bobel
,
A.
,
Hector
,
L. G.
, Jr.
,
Chelladurai
,
I.
,
Sachdev
,
A. K.
,
Brown
,
T.
,
Poling
,
W. A.
,
Kubic
,
R.
, et al
,
2019
, “
In Situ Synchrotron X-ray Imaging of 4140 Steel Laser Powder Bed Fusion
,”
Materialia
,
6
, p.
100306
.
50.
Campanelli
,
S.
,
Contuzzi
,
N.
,
Posa
,
P.
, and
Angelastro
,
A.
,
2019
, “
Study of the Aging Treatment on Selective Laser Melted Maraging 300 Steel
,”
Mater. Res. Express
,
6
(
6
), p.
066580
.
51.
Guo
,
W.
,
Sun
,
Z.
,
Yang
,
Y.
,
Wang
,
X.
,
Xiong
,
Z.
,
Li
,
Z.
,
Wang
,
C.
, et al
,
2020
, “
Study on the Junction Zone of NiTi Shape Memory Alloy Produced by Selective Laser Melting via a Stripe Scanning Strategy
,”
Intermetallics
,
126
, p.
106947
.
52.
Promoppatum
,
P.
, and
Yao
,
S.-C.
,
2020
, “
Influence of Scanning Length and Energy Input on Residual Stress Reduction in Metal Additive Manufacturing: Numerical and Experimental Studies
,”
J. Manuf. Processes
,
49
, pp.
247
259
.
53.
Fu
,
J.
,
Hu
,
Z.
,
Song
,
X.
,
Zhai
,
W.
,
Long
,
Y.
,
Li
,
H.
, and
Fu
,
M.
,
2020
, “
Micro Selective Laser Melting of NiTi Shape Memory Alloy: Defects, Microstructures and Thermal/Mechanical Properties
,”
Opt. Laser Technol.
,
131
, p.
106374
.
54.
Noble
,
W. S.
,
2006
, “
What is a Support Vector Machine?
,”
Nat. Biotechnol.
,
24
(
12
), pp.
1565
1567
.
55.
Suykens
,
J. A.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
56.
Hussain
,
M.
,
Wajid
,
S. K.
,
Elzaart
,
A.
, and
Berbar
,
M.
,
2011
, “
A Comparison of SVM Kernel Functions for Breast Cancer Detection
,”
Proceedings of the 2011 Eighth International Conference Computer Graphics, Imaging and Visualization
,
Singapore
,
Aug. 17–19
.
57.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
Smote: Synthetic Minority Over-Sampling Technique
,”
J. Artif. Intell. Res.
,
16
, pp.
321
357
.
58.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
.
59.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
60.
Zhao
,
Z.
,
Li
,
L.
,
Tan
,
L.
,
Bai
,
P.
,
Li
,
J.
,
Wu
,
L.
,
Liao
,
H.
, and
Cheng
,
Y.
,
2018
, “
Simulation of Stress Field During the Selective Laser Melting Process of the Nickel-Based Superalloy, gh4169
,”
Materials
,
11
(
9
), p.
1525
.
61.
Gajera
,
H. M.
, and
Dave
,
K. G.
,
2018
, “
Experimental Investigation and Optimization of Direct Metal Laser Sintering Process for Shrinkage Rate Using cl50ws Material
,”
Mater. Today: Proc.
,
5
(
9
), pp.
19126
19135
.
62.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
63.
Tang
,
C.
,
Le
,
K. Q.
, and
Wong
,
C. H.
,
2020
, “
Physics of Humping Formation in Laser Powder Bed Fusion
,”
Int. J. Heat Mass Transfer
,
149
, p.
119172
.
64.
Matache
,
G.
,
Vladut
,
M.
,
Paraschiv
,
A.
, and
Condruz
,
R. M.
,
2020
, “
Edge and Corner Effects in Selective Laser Melting of in 625 Alloy
,”
Manuf. Rev.
,
7
(
8
), pp.
1
7
.
65.
Yasa
,
E.
,
Deckers
,
J.
,
Craeghs
,
T.
,
Badrossamay
,
M.
, and
Kruth
,
J.-P.
,
2009
, “
Investigation on Occurrence of Elevated Edges in Selective Laser Melting
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
, pp.
673
685
.
You do not currently have access to this content.