Abstract

Ultrasonic spot welding (USW) has attracted increasing attention due to its high-throughput solid-state bonding mechanism, which shows great potential in the semiconductor and automotive industries for joining of metal sheets. However, the short welding cycle makes it challenging to effectively monitor the temperature history and deformation of the workpieces during the process. In this study, a three-dimensional (3D) finite element analysis model for USW of superelastic NiTi shape memory alloy (SMA) with Cu interlayer was developed using ansysworkbench. The thermal-stress coupled phenomena including the heat generation and stress distribution during the welding process were simulated and analyzed. First, a superelastic constitutive model for NiTi SMAs was constructed. The distribution of temperature and stress fields was then obtained by thermal-stress analysis using the direct coupling method, and the superelasticity of SMAs was observed. The simulation results showed that the highest temperature occurred in the center of the welding area during USW, which is proportional to the welding time and inversely proportional to the clamping pressure. In addition, the maximum stress occurred at the center of the contact surface between upper NiTi and Cu interlayer. After that, the validity of the simulation results was verified by setting up a thermocouple temperature measurement platform to collect the temperature data, which exhibited a good agreement with the simulated results. The simulation procedure demonstrates its potential to predict temperature and stress distributions during the USW process.

References

1.
Oliveira
,
J. P.
,
Miranda
,
R. M.
, and
Braz Fernandes
,
F. M.
,
2017
, “
Welding and Joining of NiTi Shape Memory Alloys: A Review
,”
Prog. Mater. Sci.
,
88
, pp.
412
466
.
2.
Zeng
,
Z.
,
Cong
,
B. Q.
,
Oliveira
,
J. P.
,
Ke
,
W. C.
,
Schell
,
N.
,
Peng
,
B.
,
Qi
,
Z. W.
,
Ge
,
F. G.
,
Zhang
,
W.
, and
Ao
,
S. S.
,
2020
, “
Wire and Arc Additive Manufacturing of a Ni-Rich NiTi Shape Memory Alloy: Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
32
, p.
101051
.
3.
Melly
,
S. K.
,
Liu
,
L. W.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2020
, “
Active Composites Based on Shape Memory Polymers: Overview, Fabrication Methods, Applications, and Future Prospects
,”
J. Mater. Sci.
,
55
(
25
), pp.
10975
11051
.
4.
Oliveira
,
J. P.
,
Barbosa
,
D.
,
Braz Fernandes
,
F. M.
, and
Miranda
,
R. M.
,
2016
, “
Tungsten Inert gas (TIG) Welding of Ni-Rich NiTi Plates: Functional Behavior
,”
Smart. Mater. Struct.
,
25
(
3
), pp.
1
8
.
5.
Yang
,
D.
,
Jiang
,
H. C.
,
Zhao
,
M. J.
, and
Rong
,
L. J.
,
2014
, “
Microstructure and Mechanical Behaviors of Electron Beam Welded NiTi Shape Memory Alloys
,”
Mater. Des.
,
57
, pp.
21
25
.
6.
Mehrpouya
,
M.
,
Gisario
,
A.
, and
Elahinia
,
M.
,
2018
, “
Laser Welding of NiTi Shape Memory Alloy: A Review
,”
J. Manuf. Processes.
,
31
, pp.
162
186
.
7.
Shamsolhodaei
,
A.
,
Sun
,
Q.
,
Wang
,
X.
,
Panton
,
B.
,
Di
,
H.
, and
Zhou
,
Y. N.
,
2020
, “
Effect of Laser Positioning on the Microstructure and Properties of NiTi-Copper Dissimilar Laser Welds
,”
J. Mater. Eng. Perform.
,
29
(
2
), pp.
849
857
.
8.
Zeng
,
Z.
,
Yang
,
M.
,
Oliveira
,
J. P.
,
Song
,
D.
, and
Peng
,
B.
,
2016
, “
Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications
,”
Smart. Mater. Struct.
,
25
(
8
), p.
085001
.
9.
Chan
,
C. W.
,
Man
,
H. C.
, and
Yue
,
T. M.
,
2011
, “
Effects of Process Parameters upon the Shape Memory and Pseudo-Elastic Behaviors of Laser-Welded NiTi Thin Foil
,”
Metall. Mater. Trans. A.
,
42
(
8
), pp.
2264
2270
.
10.
Oliveira
,
J. P.
,
Braz Fernandes
,
F. M.
,
Miranda
,
R. M.
,
Schell
,
N.
, and
Ocaña
,
J. L.
,
2016
, “
Effect of Laser Welding Parameters on the Austenite and Martensite Phase Fractions of NiTi
,”
Mater. Charact.
,
119
, pp.
148
151
.
11.
Haddadi
,
F.
, and
Abu-Farha
,
F.
,
2015
, “
Microstructural and Mechanical Performance of Aluminium to Steel High Power Ultrasonic Spot Welding
,”
J. Mater. Process. Technol.
,
225
, pp.
262
274
.
12.
Patel
,
V. K.
,
Bhole
,
S. D.
, and
Chen
,
D. L.
,
2013
, “
Ultrasonic Spot Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Lap Shear Strength
,”
Mater. Sci. Eng. A.
,
569
, pp.
78
85
.
13.
Matsuoka
,
S.
, and
Imai
,
H.
,
2009
, “
Direct Welding of Different Metals Used Ultrasonic Vibration
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
954
960
.
14.
Ao
,
S. S.
,
Zhang
,
W.
,
Li
,
C. J.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
, and
Luo
,
Z.
,
2020
, “
Variable-Parameter NiTi Ultrasonic Spot Welding With Cu Interlayer
,”
Mater. Manuf. Processes.
,
36
(
5
), pp.
599
607
.
15.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Zeng
,
Z.
,
Luo
,
Z.
, and
Hao
,
Z. Z.
,
2018
, “
Effect of Ultrasonic Spot Welding on the Mechanical Behaviour of NiTi Shape Memory Alloys
,”
Smart. Mater. Struct.
,
227
(
8
), pp.
1
6
.
16.
Zhang
,
W.
,
Ao
,
S. S.
, and
Oliveira
,
J. P.
,
2018
, “
Microstructural Characterization and Mechanical Behavior of NiTi Shape Memory Alloys Ultrasonic Joints Using Cu Interlayer
,”
Materials
,
11
(
10
), p.
1830
.
17.
Zhang
,
W.
,
Ao
,
S. S.
,
Oliveira
,
J. P.
,
Li
,
C. J.
,
Zeng
,
Z.
,
Wang
,
A. Q.
, and
Lu
,
O. Z.
,
2020
, “
On the Metallurgical Joining Mechanism During Ultrasonic Spot Welding of NiTi Using a Cu Interlayer
,”
Scr. Mater.
,
178
, pp.
414
417
.
18.
Shen
,
N.
,
Samanta
,
A.
,
Ding
,
H.
, and
Cai
,
W.
,
2016
, “
Simulating Microstructure Evolution of Battery Tabs During Ultrasonic Welding
,”
J. Manuf. Processes.
,
23
, pp.
306
314
.
19.
Lee
,
D.
,
Kannatey-Asibu
,
E.
, and
Cai
,
W.
,
2013
, “
Ultrasonic Welding Simulations for Multiple Layers of Lithium-Ion Battery Tabs
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061011
.
20.
Li
,
H.
,
Cao
,
B.
,
Liu
,
J.
, and
Yang
,
J.
,
2018
, “
Modeling of High-Power Ultrasonic Welding of Cu/Al Joint
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
833
844
.
21.
Kim
,
W.
,
Argento
,
A.
,
Grima
,
A.
,
Scholl
,
D.
, and
Ward
,
S.
,
2011
, “
Thermomechanical Analysis of Frictional Heating in Ultrasonic Spot Welding of Aluminium Plates
,”
Proc. Inst. Mech. Eng. B
,
225
(
7
), pp.
1093
1103
.
22.
Dolce
,
M.
, and
Cardone
,
D.
,
2001
, “
Mechanical Behaviour of Shape Memory Alloys for Seismic Applications 2. Austenite NiTi Wires Subjected to Tension
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2657
2677
.
23.
Auricchio
,
F.
, and
Taylor
,
R. L.
,
1997
, “
Shape-Memory Alloys: Modelling and Numerical Simulations of the Finite-Strain Superelastic Behavior
,”
Comput. Meth. Appl. Mech. Eng.
,
143
(
1–2
), pp.
175
194
.
24.
Auricchio
,
F.
, and
Petrini
,
L.
,
2002
, “
Improvements and Algorithmical Considerations on a Recent Three-Dimensional Model Describing Stress-Induced Solid Phase Transformations
,”
Int. J. Numer. Meth. Eng.
,
55
(
11
), pp.
1255
1284
.
25.
Auricchio
,
F.
,
Taylor
,
R. L.
, and
Lubliner
,
J.
,
1997
, “
Shape-Memory Alloys: Macromodelling and Numerical Simulations of the Superelastic Behavior
,”
Comput. Methods. Appl. Mech. Eng.
,
146
(
3–4
), pp.
281
312
.
26.
Auricchio
,
F.
,
2001
, “
A Robust Integration-Algorithm for a Finite-Strain Shape-Memory-Alloy
,”
Int. J. Plast.
,
17
(
7
), pp.
971
990
.
27.
Souza
,
A. C.
,
Mamiya
,
E. N.
, and
Zouain
,
N.
,
1998
, “
Three-Dimensional Model for Solids Undergoing Stress-Induced Phase Transformations
,”
Eur. J. Mech. A Solids
,
17
(
5
), pp.
789
806
.
28.
Auricchio
,
F.
,
Fugazza
,
D.
, and
DesRoches
,
R.
,
2006
, “
Numerical and Experimental Evaluation of the Damping Properties of Shape-Memory Alloys
,”
ASME J. Eng. Mater. Technol.
,
128
(
3
), pp.
312
319
.
29.
Elangovan
,
S.
,
Semeer
,
S.
, and
Prakasan
,
K.
,
2009
, “
Temperature and Stress Distribution in Ultrasonic Metal Welding-an FEA-Based Study
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1143
1150
.
30.
Senouci
,
A.
,
Zaidi
,
H.
,
Frene
,
J.
,
Bouchoucha
,
A.
, and
Paulmier
,
D.
,
1999
, “
Damage of Surfaces in Sliding Electrical Contact Copper/Steel
,”
Appl. Surf. Sci.
,
144
, pp.
287
291
.
31.
Braunovic
,
M.
,
Konchits
,
V.
, and
Myshkin
,
N.
,
2007
,
Electrical Contacts: Fundamentals, Applications and Technology
,
CRC Press
,
Boca Raton
, p.
672
.
32.
Ngo
,
T. T.
,
Huang
,
J. H.
, and
Wang
,
C. C.
,
2015
, “
The BFGS Method for Estimating the Interface Temperature and Convection Coefficient in Ultrasonic Welding
,”
Int. Commun. Heat. Mass. Transfer.
,
69
, pp.
66
75
.
You do not currently have access to this content.