Abstract

Lapping has a history of hundreds of years, yet it still relies on the experience of workers. To improve the automaticity and controllability of the lapping process, a modeling method of friction and wear is developed to predict the surface profile evolution of the workpiece and lapping plate in the lapping process. In the proposed method, by solving the balance equations of resultant force and moment, the inclination angles of the workpiece can be calculated; thus, a more accurate contact pressure distribution of the workpiece/lapping plate interface can be calculated. Combined with the material removal rate model, the continuous evolution process of the workpiece and lapping plate can be predicted in the lapping process. The modeling method was validated by a lapping test of a flat optical glass workpiece (Φ 100 mm) with a composite copper plate. The results show that the proposed method can predict the evolution of the surface profile of the workpiece and lapping plate with high accuracy. Consequently, the lapping plate can be dressed at the right time point. Benefit from this, in the validation test the Peak to Valley (PV) value of the workpiece (with 5 mm edge exclusion) was reduced from 5.279 µm to 0.267 µm in 30 min. The proposed surface profile evolution modeling method not only improves the lapping efficiency but also provides an opportunity to understand the lapping process.

References

1.
Cho
,
B. J.
,
Kim
,
H. M.
,
Manivannan
,
R.
,
Moon
,
D. J.
, and
Park
,
J. G.
,
2013
, “
On the Mechanism of Material Removal by Fixed Abrasive Lapping of Various Glass Substrates
,”
Wear
,
302
(
1–2
), pp.
1334
1339
.
2.
Buijs
,
M.
, and
Korpel-van Houten
,
K.
,
1993
, “
Three-Body Abrasion of Brittle Materials as Studied by Lapping
,”
Wear
,
166
(
2
), pp.
237
245
.
3.
Malacara
,
D.
, and
Thompson
,
B. J.
,
2002
, “
Handbook of Optical Engineering
,”
Opt. Lasers Eng.
,
38
(
6
), pp.
719
741
.
4.
Preston
,
F. W.
,
2002
, “
The Structure of Abraded Glass Surfaces
,”
Trans. Opt. Soc.
,
23
(
3
), pp.
141
164
.
5.
Aspden
,
R.
,
McDonough
,
R.
, and
Nitchie
,
F. R.
,
1972
, “
Computer Assisted Optical Surfacing
,”
Appl. Opt.
,
11
(
12
), p.
2739
.
6.
Hed
,
P. P.
,
1993
, Calculations of Material Removal, Removal Rate, and Preston Coefficient in Continuous Lapping/Polishing Machines. No. UCRL-ID-115321. Lawrence Livermore National Lab., CA (United States).
7.
Lambropoulos
,
J. C.
,
Xu
,
S.
, and
Fang
,
T.
,
1997
, “
Loose Abrasive Lapping Hardness of Optical Glasses and its Interpretation
,”
Appl. Opt.
,
36
(
7
), p.
1501
.
8.
Evans
,
C. J.
,
Paul
,
E.
,
Dornfeld
,
D.
,
Lucca
,
D. A.
,
Byrne
,
G.
,
Tricard
,
M.
,
Klocke
,
F.
,
Dambon
,
O.
, and
Mullany
,
B. A.
,
2003
, “
Material Removal Mechanisms in Lapping and Polishing
,”
CIRP Ann.
,
52
(
2
), pp.
611
633
.
9.
Zhang
,
F.
,
Busnaina
,
A. A.
, and
Ahmadi
,
G.
,
1999
, “
Particle Adhesion and Removal in Chemical Mechanical Polishing and Post-CMP Cleaning
,”
J. Electrochem. Soc.
,
146
(
7
), pp.
2665
2669
.
10.
Shi F
,
G.
, and
Zhao
,
B.
,
1998
, “
Modeling of Chemical-Mechanical Polishing With Soft Pads
,”
Appl. Phys. A: Mater. Sci. Process.
,
67
(
2
), pp.
249
252
.
11.
Tseng
,
W. T.
, and
Wang
,
Y. L.
,
1997
, “
Re-Examination of Pressure and Speed Dependences of Removal Rate During Chemical-Mechanical Polishing Processes
,”
J. Electrochem. Soc.
,
144
(
2
), pp.
L15
L17
.
12.
Tseng
,
W. T.
,
Chin
,
J. H.
, and
Kang
,
L. C.
,
1999
, “
A Comparative Study on the Roles of Velocity in the Material Removal Rate During Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
146
(
5
), pp.
1952
1959
.
13.
Jin
,
M.
,
Wang
,
L.
,
Ye
,
S.
,
Qi
,
H.
,
Kang
,
J.
,
Hong
,
T.
,
Fang
,
Z.
, and
Dong
,
X.
,
2020
, “
A Novel Functionally Graded Lapping and Polishing Method for the Improvement of Material Removal Uniformity
,”
J. Manuf. Process.
,
50
, pp.
102
110
.
14.
Li
,
W.
,
Zhou
,
P.
,
Geng
,
Z.
,
Yan
,
Y.
, and
Guo
,
D.
,
2019
, “
A Global Correction Process for Flat Optics With Patterned Polishing Pad
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091012
.
15.
Liu
,
C. W.
,
Dai
,
B. T.
,
Tseng
,
W. T.
, and
Yeh
,
C. F.
,
1996
, “
Modeling of the Wear Mechanism During Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
,
143
(
2
), pp.
716
721
.
16.
Chen
,
K. S.
,
Yeh
,
H. M.
,
Yan
,
J. L.
, and
Chen
,
Y. T.
,
2009
, “
Finite-Element Analysis on Wafer-Level CMP Contact Stress: Reinvestigated Issues and the Effects of Selected Process Parameters
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11–12
), pp.
1118
1130
.
17.
Tichy
,
J.
,
Levert
,
J. A.
,
Shan
,
L.
, and
Danyluk
,
S.
,
1999
, “
Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
146
(
4
), pp.
1523
1528
.
18.
Hu
,
I.
,
Yang
,
T.
, and
Chen
,
K.
,
2011
, “
Synergetic Effects of Wafer Rigidity and Retaining-Ring Parameters on Contact Stress Uniformity in Chemical Mechanical Planarization
,”
Int. J. Adv. Manuf. Technol.
,
56
(
5–8
), pp.
523
538
.
19.
Kim
,
A. T.
,
Seok
,
J.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
,
2003
, “
Soft Elastohydrodynamic Lubrication With Roughness
,”
ASME J. Tribol.
,
125
(
2
), pp.
448
451
.
20.
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2005
, “
A 3D EHL Simulation of CMP
,”
J. Electrochem. Soc.
,
152
(
1
), p.
G7
.
21.
Wagner
,
R. E.
, and
Shannon
,
R. R.
,
1974
, “
Fabrication of Aspherics Using a Mathematical Model for Material Removal
,”
Appl. Opt.
,
13
(
7
), pp.
1683
1689
.
22.
Suratwala
,
T.
,
Steele
,
R.
,
Feit
,
M.
,
Desjardin
,
R.
, and
Mason
,
D.
,
2012
, “
Convergent Pad Polishing of Amorphous Silica
,”
Int. J. Appl. Glass Sci.
,
3
(
1
), pp.
14
28
.
23.
Suratwala
,
T. I.
,
Feit
,
M. D.
, and
Steele
,
W. A.
,
2010
, “
Toward Deterministic Material Removal and Surface Figure During Fused Silica Pad Polishing
,”
J. Am. Ceram. Soc.
,
93
(
5
), pp.
1326
1340
.
24.
Walker
,
D. D.
,
Brooks
,
D.
,
King
,
A.
,
Freeman
,
R.
,
Morton
,
R.
,
McCavana
,
G.
, and
Kim
,
S. W.
,
2003
, “
The ‘Precessions’ Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces
,”
Opt. Express
,
11
(
8
), pp.
958
964
.
25.
Kim
,
D. W.
, and
Kim
,
S. W.
,
2005
, “
Static Tool Influence Function for Fabrication Simulation of Hexagonal Mirror Segments for Extremely Large Telescopes
,”
Opt. Express
,
13
(
3
), pp.
910
917
.
26.
Cheung
,
C. F.
,
Kong
,
L. B.
,
Ho
,
L. T.
, and
To
,
S.
,
2011
, “
Modelling and Simulation of Structure Surface Generation Using Computer Controlled Ultra-Precision Polishing
,”
Precis. Eng.
,
35
(
4
), pp.
574
590
.
27.
Ong
,
N. S.
, and
Venkatesh
,
V. C.
,
1998
, “
Semi-Ductile Grinding and Polishing of Pyrex Glass
,”
J. Mater. Process. Technol.
,
83
(
1
), pp.
261
266
.
28.
Pan
,
R.
,
Zhong
,
B.
,
Chen
,
D.
,
Wang
,
Z.
,
Fan
,
J.
,
Zhang
,
C.
, and
Wei
,
S.
,
2018
, “
Modification of Tool Influence Function of Bonnet Polishing Based on Interfacial Friction Coefficient
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
43
52
.
29.
Téllez-Arriaga
,
L.
,
Cordero-Dávila
,
A.
,
Robledo-Sánchez
,
C. I.
, and
Cuautle-Cortés
,
J.
,
2007
, “
Correction of the Preston Equation for low Speeds
,”
Appl. Opt.
,
46
(
9
), pp.
1408
1410
.
30.
Yang
,
M. Y.
, and
Lee
,
H. C.
,
2001
, “
Local Material Removal Mechanism Considering Curvature Effect in the Polishing Process of the Small Aspherical Lens die
,”
J. Mater. Process. Technol.
,
116
(
2
), pp.
298
304
.
31.
Fu
,
G.
, and
Chandra
,
A.
,
2005
, “
The Relationship Between Wafer Surface Pressure and Wafer Backside Loading in Chemical Mechanical Polishing
,”
Thin Solid Films
,
474
(
1–2
), pp.
217
221
.
32.
Xu
,
W.
,
Lu
,
X.
,
Pan
,
G.
,
Lei
,
Y.
, and
Luo
,
J.
,
2011
, “
Effects of the Ultrasonic Flexural Vibration on the Interaction Between the Abrasive Particles; pad and Sapphire Substrate During Chemical Mechanical Polishing (CMP)
,”
Appl. Surf. Sci.
,
257
(
7
), pp.
2905
2911
.
33.
Komanduri
,
R.
,
1996
, “
On Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses
,”
CIRP Ann.
,
45
(
1
), pp.
509
514
.
34.
Lee
,
H.
, and
Jeong
,
H.
,
2011
, “
A Wafer-Scale Material Removal Rate Profile Model for Copper Chemical Mechanical Planarization
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
395
403
.
35.
Kim
H
,
Jeong
H
.
Effect of Process Conditions on Uniformity of Velocity and Wear Distance of pad and Wafer During Chemical Mechanical Planarization
.
J. Electron. Mater.
,
2004
,
33
(
1
):
53
60
.
36.
Yu
,
T. K.
,
Yu
,
C. C.
, and
Orlowski
,
M.
,
1993
,
A Statistical Polishing pad Model for Chemical-Mechanical Polishing
,
IEEE
,
New York
.
37.
Pal
,
R. K.
,
Garg
,
H.
, and
Karar
,
V.
,
Full Aperture Optical Polishing Process: Overview and Challenges//New Delhi
,
Springer
,
India
, pp.
461
470
.
38.
Zhou
,
P.
,
Kang
,
R. K.
,
Jin
,
Z. J.
, and
Guo
,
D. M.
,
2012
, “
Simulation of CMP Process Based on Mixed Elastohydrodynamic Lubrication Model With Layered Elastic Theory
,”
Adv. Mater. Res.
,
565
, pp.
330
335
. www.scientific.net/AMR.565.330
39.
Põdra
,
P.
, and
Andersson
,
S.
,
1997
, “
Wear Simulation With the Winkler Surface Model
,”
Wear
,
207
(
1
), pp.
79
85
.
40.
Kim
,
A. T.
,
Seok
,
J.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
,
2003
, “
A Multiscale Elastohydrodynamic Contact Model for CMP
,”
J. Electrochem. Soc.
,
150
(
9
), pp.
G570
G576
.
41.
Yang
,
T. S.
,
Wang
,
Y. C.
,
Chen
,
K. S.
,
Chen
,
Y. J.
, and
Yan
,
J. L.
,
2008
, “
Optimization of Wafer-Back Pressure Profile in Chemical Mechanical Planarization
,”
J. Electrochem. Soc.
,
155
(
10
), p.
H720
.
42.
Huang
,
P. Y.
,
2005
, “
A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing
,”
ASME J. Tribol.
,
127
(
1
), pp.
190
197
.
43.
Zhou
,
P.
,
Dong
,
Z.
,
Kang
,
R.
,
Jin
,
Z.
, and
Guo
,
D.
,
2015
, “
A Mixed Elastohydrodynamic Lubrication Model for Simulation of Chemical Mechanical Polishing With Double-Layer Structure of Polishing pad
,”
Int. J. Adv. Manuf. Technol.
,
77
(
1–4
), pp.
107
116
.
44.
Chang
,
O.
,
Kim
,
H.
,
Park
,
K.
,
Park
,
B.
,
Seo
,
H.
, and
Jeong
,
H.
,
2007
, “
Mathematical Modeling of CMP Conditioning Process
,”
Microelectron. Eng.
,
84
(
4
), pp.
577
583
.
You do not currently have access to this content.