Abstract

The effect of graphene nanoplatelets (GNPS) on the grindability of GNP reinforced ZrB2 was studied using a resin bonded diamond grinding wheel under dry and wet conditions. A comparative study of grinding forces was performed at selected wheel surface speeds and depths of cut for surface grinding. ZrB2-GNP showed lower normal grinding forces due to the improved fracture toughness and reduced hardness. The presence of GNP reinforcement in ZrB2 resulted in lower tangential forces and reduced specific grinding energy due to the role of GNP as a solid lubricant. The measured forces showed a good correlation with the micro cutting model for ZrB2 and ZrB2-GNP under dry conditions. The tangential forces showed the same trend as normal forces at different depths of cut and wheel surface speeds for ZrB2 and ZrB2-GNP with average force ratios of 0.3 and 0.35, respectively. The presence of porosity in ZrB2 increased the normal grinding forces during wet grinding. Scanning electron microscope (SEM) images of the grinding chips indicated a mixture of both the ductile mode and the brittle mode of material removal with predominantly brittle fractured chips. Energy-dispersive spectroscopy (EDS) confirmed the presence of GNPs in ZrB2-GNP grinding chips. The topography of the grinding wheel showed higher wheel loading after the dry grinding than that of wet grinding. The wet grinding resulted in relatively lower surface roughness (Ra values) than dry grinding.

References

1.
Fahrenholtz
,
W. G.
,
Hilmas
,
G. E.
,
Talmy
,
I. G.
, and
Zaykoski
,
J. A.
,
2007
, “
Refractory Diborides of Zirconium and Hafnium
,”
J. Am. Ceram. Soc.
,
90
(
5
), pp.
1347
1364
.
2.
Lonergan
,
J. M.
,
Fahrenholtz
,
W. G.
, and
Hilmas
,
G. E.
,
2014
, “
Zirconium Diboride With High Thermal Conductivity
,”
J. Am. Ceram. Soc.
,
97
(
6
), pp.
1689
1691
.
3.
Justin
,
J. F.
, and
Jankowiak
,
A.
,
2011
, “
Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability
,”
Aerosp Lab.
,
3
(
3
), pp.
1
11
. https://hal.archives-ouvertes.fr/hal-01183657
4.
Saccone
,
G.
,
Gardi
,
R.
,
Alfano
,
D.
,
Ferrigno
,
A.
, and
Del Vecchio
,
A.
,
2016
, “
Laboratory, On-Ground and In-Flight Investigation of Ultra High Temperature Ceramic Composite Materials
,”
Aerosp. Sci. Technol.
,
58
, pp.
490
497
.
5.
Sani
,
E.
,
Mercatelli
,
L.
,
Sans
,
J. L.
,
Silvestroni
,
L.
, and
Sciti
,
D.
,
2013
, “
Porous and Dense Hafnium and Zirconium Ultra-High Temperature Ceramics for Solar Receivers
,”
Opt. Mater.
,
36
(
2
), pp.
163
168
.
6.
Mercatelli
,
L.
,
Sani
,
E.
,
Jafrancesco
,
D.
,
Sansoni
,
P.
,
Fontani
,
D.
,
Meucci
,
M.
,
Coraggia
,
S.
, et al
,
2013
, “
Ultra-Refractory Diboride Ceramics for Solar Plant Receivers
,”
Energy Procedia
,
49
, pp.
468
477
.
7.
Nieto
,
A.
,
Bisht
,
A.
,
Lahiri
,
D.
,
Zhang
,
C.
, and
Agarwal
,
A.
,
2017
, “
Graphene Reinforced Metal and Ceramic Matrix Composites: A Review
,”
Int. Mater. Rev.
,
62
(
5
), pp.
241
302
.
8.
Lee
,
C.
,
Wei
,
X.
,
Li
,
Q.
,
Carpick
,
R.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2009
, “
Elastic and Frictional Properties of Graphene
,”
Phys. Status Solidi
,
246
(
11–12
), pp.
2562
2567
.
9.
Yadhukulakrishnan
,
G. B.
,
Karumuri
,
S.
,
Rahman
,
A.
,
Singh
,
R. P.
,
Kalkan
,
A. K.
, and
Harimkar
,
S. P.
,
2013
, “
Spark Plasma Sintering of Graphene Reinforced Zirconium Diboride Ultra-High Temperature Ceramic Composites
,”
Ceram. Int.
,
39
(
6
), pp.
6637
6646
.
10.
Shanbhog
,
N.
,
Vasanthakumar
,
K.
,
Arunachalam
,
N.
, and
Bakshi
,
S. R.
,
2019
, “
Effect of Graphene Nano-Platelet Addition on the Microstructure and Spark Plasma Sintering Kinetics of Zirconium Diboride
,”
Int. J. Refract. Met. Hard Mater.
,
84
(
2019
), p.
104979
.
11.
Malkin
,
S.
, and
Hwang
,
T. W.
,
1996
, “
Grinding Mechanisms for Ceramics
,”
CIRP Ann. Manuf. Technol.
,
45
(
2
), pp.
569
580
.
12.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile-Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
184
189
.
13.
Cheng
,
J.
,
Wu
,
J.
,
Zhou
,
Y. G.
,
Gong
,
Y. D.
,
Wen
,
X. L.
, and
Wen
,
Q.
,
2017
, “
Characterization of Fracture Toughness and Micro-Grinding Properties of Monocrystal Sapphire With a Multi-Layer Toughening Micro-Structure (MTM)
,”
J. Mater. Process. Technol.
,
239
(
2017
), pp.
258
272
.
14.
Wu
,
P.
,
Li
,
X.
,
Zhang
,
C.
,
Chen
,
X.
,
Lin
,
S.
,
Sun
,
H.
,
Lin
,
C. T.
,
Zhu
,
H.
, and
Luo
,
J.
,
2017
, “
Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact
,”
ACS Appl. Mater. Interfaces
,
9
(
25
), pp.
21554
21562
.
15.
Gopal
,
A. V.
, and
Rao
,
P. V.
,
2004
, “
Performance Improvement of Grinding of SiC Using Graphite as a Solid Lubricant
,”
Mater. Manuf. Processes
,
19
(
2
), pp.
177
186
.
16.
Chen
,
Z.
,
Qi
,
H.
,
Zhao
,
B.
,
Zhou
,
Y.
,
Shi
,
L.
,
Li
,
H. N.
, and
Ding
,
W.
,
2021
, “
On the Tribology and Grinding Performance of Graphene-Modified Porous Composite-Bonded CBN Wheel
,”
Ceram. Int.
,
47
(
3
), pp.
3259
3266
.
17.
Hwang
,
T. W.
, and
Malkin
,
S.
,
1999
, “
Grinding Mechanisms and Energy Balance for Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
623
631
.
18.
Malkin
,
S.
, and
Guo
,
C.
,
2008
,
Grinding Technology: Theory and Application of Machining With Abrasives
,
Industrial Press
,
New York
.
19.
Li
,
K.
, and
Liao
,
T. W.
,
1997
, “
Modelling of Ceramic Grinding Processes—Part I: Number of Cutting Points and Grinding Forces Per Grit
,”
J. Mater. Process. Technol.
,
65
(
1997
), pp.
1
10
.
20.
Jahanmir
,
S.
,
Xu
,
H. K.
, and
Ives
,
L. K.
,
1999
, “Mechanisms of Material Removal in Abrasive Machining of Ceramics,”
Machining of Ceramics and Composites
,
S.
Jahanmir
,
M.
Ramulu
, and
P.
Koshy
, eds.,
Marcel Dekker
,
New York
, pp.
11
84
.
You do not currently have access to this content.