Abstract

Continuous drive friction welding (CDW) is a state-of-the-art solid-state welding technology for joining metallic components used in aerospace, oil and gas, and power generation industries. This study summarizes the results of mechanical and microstructural investigations on a modified AISI-8630 steel subjected to CDW. The effects of welding process parameters, including rotational speed, friction, and forge forces, during CDW were explored to determine an optimum welding condition. The mechanical properties of the weld, and microstructural characteristics across different regions of the weld were measured and examined. The microstructure characterization results suggest that the weld zone (WZ) experiences temperatures above the Ac3 and the thermo-mechanically affected zone (TMAZ) experiences temperatures between Ac1 and Ac3 of the material. Investigations with electron backscatter diffraction (EBSD) demonstrated the occurrence of strain-induced dynamic recrystallization in the weld. The weld demonstrated higher yield and ultimate tensile strengths at the expense of ductility and hardening capacity compared to the base metal (BM). The strain-hardening profiles of the welds exhibited a dual-slope characteristic, an indication of different levels of plastic deformation experienced by the constituent phases (i.e., martensite, bainite and ferrite) present in the microstructure. The maximum strength-to-ductility combination and static toughness values were obtained for the weld produced under the highest rotational speed, maximum friction force and an intermediate forge force of 1200–1400 rpm, 375–425 kN, and 600–650 kN, respectively.

References

1.
Banerjee
,
A.
,
Ntovas
,
M.
,
Da Silva
,
L.
, and
Rahimi
,
S.
,
2021
, “
Effect of Rotational Speed and Inertia on the Mechanical Properties and Microstructural Evolution During Inertia Friction Welding of 8630M Steel
,”
Mater. Lett.
,
296
(
16
), p.
129906
.
2.
Sharma
,
S. K.
, and
Maheshwari
,
S.
,
2017
, “
A Review on Welding of High Strength Oil and Gas Pipeline Steels
,”
Nat. Gas Sci. Eng.
,
38
(
2
), pp.
203
217
.
3.
Selvamani
,
S. T.
,
Palanikumar
,
K.
,
Umanath
,
K.
, and
Jayaperumal
,
D.
,
2015
, “
Analysis of Friction Welding Parameters on the Mechanical Metallurgical and Chemical Properties of AISI 1035 Steel Joints
,”
Mater. Des. (1980–2015)
,
65
, pp.
652
661
.
4.
Li
,
W.
,
Vairis
,
A.
,
Preuss
,
M.
, and
Ma
,
T.
,
2016
, “
Linear and Rotary Friction Welding Review
,”
Int. Mater. Rev.
,
61
(
2
), pp.
71
100
.
5.
Udayakumar
,
T.
,
Raja
,
K.
,
Tanksale Abhijit
,
A.
, and
Sathiya
,
P.
,
2013
, “
Experimental Investigation on Mechanical and Metallurgical Properties of Super Duplex Stainless Steel Joints Using Friction Welding Process
,”
J. Manuf. Process.
,
15
(
4
), pp.
558
571
.
6.
Hazra
,
M.
,
Rao
,
K. S.
, and
Reddy
,
G. M.
,
2014
, “
Friction Welding of a Nickel Free High Nitrogen Steel: Influence of Forge Force on Microstructure, Mechanical Properties and Pitting Corrosion Resistance
,”
J. Mater. Res. Technol.
,
3
(
1
), pp.
90
100
.
7.
Selvamani
,
S. T.
, and
Palanikumar
,
K.
,
2014
, “
Optimizing the Friction Welding Parameters to Attain Maximum Tensile Strength in AISI 1035 Grade Carbon Steel Rods
,”
Meas.
,
53
, pp.
10
21
.
8.
Sahin
,
M.
,
2007
, “
Evaluation of the Joint-Interface Properties of Austenitic-Stainless Steels (AISI 304) Joined by Friction Welding
,”
Mater. Des.
,
28
(
7
), pp.
2244
2250
.
9.
Niu
,
P. L.
,
Li
,
W. Y.
, and
Chen
,
D. L.
,
2018
, “
Strain Hardening Behavior and Mechanisms of Friction Stir Welded Dissimilar Joints of Aluminum Alloys
,”
Mater. Lett.
,
231
, pp.
68
71
.
10.
ASTM E8/E8M-21
,
2021
, “
Standard Test Methods for Tension Testing of Metallic Materials [Metric]
,” ASTM International, West Conshohocken, PA.
11.
Rahimi
,
S.
,
Wynne
,
B. P.
, and
Baker
,
T. N.
,
2017
, “
Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel
,”
Metall. Mater. Trans. A
,
48
(
1
), pp.
362
378
.
12.
Baker
,
T. N.
,
Rahimi
,
S.
,
Wei
,
B.
,
He
,
K.
, and
McPherson
,
N. A.
,
2019
, “
Evolution of Microstructure During Double-Sided Friction Stir Welding of Microalloyed Steel
,”
Metall. Mater. Trans. A
,
50
(
6
), pp.
2748
2764
.
13.
Ma
,
T. J.
,
Tang
,
L. F.
,
Li
,
W. Y.
,
Zhang
,
Y.
,
Xiao
,
Y.
, and
Vairis
,
A.
,
2018
, “
Linear Friction Welding of a Solid-Solution Strengthened Ni-Based Superalloy: Microstructure Evolution and Mechanical Properties Studies
,”
J. Manuf. Process.
,
34
, pp.
442
450
.
14.
Kuril
,
A. A.
,
Janaki Ram
,
G. D.
, and
Bakshi
,
S. R.
,
2019
, “
Microstructure and Mechanical Properties of Keyhole Plasma Arc Welded Dual Phase Steel DP600
,”
J. Mater. Process. Technol.
,
270
, pp.
28
36
.
15.
Khodaverdizadeh
,
H.
,
Mahmoudi
,
A.
,
Heidarzadeh
,
A.
, and
Nazari
,
E.
,
2012
, “
Effect of Friction Stir Welding (FSW) Parameters on Strain Hardening Behavior of Pure Copper Joints
,”
Mater. Des.
,
35
, pp.
330
334
.
16.
Ashrafi
,
H.
,
Shamanian
,
M.
,
Emadi
,
R.
, and
Saeidi
,
N.
,
2017
, “
Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
1414
1423
.
17.
Pang
,
Q.
,
Zhao
,
Z.
, and
Tang
,
D.
,
2015
, “
Microstructure and Properties of Hot-Rolled High Strength Bainitic Steel by Laser Welding
,”
Mater. Des.
,
87
, pp.
363
369
.
18.
Byun
,
T. S.
, and
Kim
,
I. S.
,
1993
, “
Tensile Properties and Inhomogeneous Deformation of Ferrite-Martensite Dual-Phase Steels
,”
J. Mater. Sci.
,
28
(
11
), pp.
2923
2932
.
19.
Bag
,
A.
,
Ray
,
K. K.
, and
Dwarakadasa
,
E. S.
,
1999
, “
Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels
,”
Metall. Mater. Trans. A
,
30
(
5
), pp.
1193
1202
.
20.
Banerjee
,
A.
,
Wang
,
H.
,
Brown
,
A.
,
Ameri
,
A.
,
Zhu
,
Q.
,
Bhattacharyya
,
S.
,
Hazell
,
P. J.
, and
Prusty
,
B. G.
,
2020
, “
Experimental Investigation on the Dynamic Flow Behaviour and Structure-Property Correlation of Dual-Phase High Carbon Steel at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
771
, p.
138655
.
21.
Cuddy
,
J.
, and
Nabil Bassim
,
M.
,
1989
, “
Study of Dislocation Cell Structures From Uniaxial Deformation of AISI 4340 Steel
,”
Mater. Sci. Eng. A
,
113
, pp.
421
429
.
22.
Hollomon
,
J. H.
,
1945
, “
Tensile Deformation
,”
Trans. Metall. Soc. AIME
,
162
, pp.
268
289
.
23.
Karimi
,
M. M.
, and
Kheirandish
,
S.
,
2009
, “
Comparison of Work Hardening Behaviour of Ferritic-Bainitic and Ferritic-Martensitic Dual Phase Steels
,”
Steel Res. Int.
,
80
(
2
), pp.
160
164
.
24.
Akbarpour
,
M. R.
, and
Ekrami
,
A.
,
2008
, “
Effect of Ferrite Volume Fraction on Work Hardening Behavior of High Bainite Dual Phase (DP) Steels
,”
Mater. Sci. Eng. A
,
477
(
1
), pp.
306
310
.
25.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.
26.
Afrin
,
N.
,
Chen
,
D. L.
,
Cao
,
X.
, and
Jahazi
,
M.
,
2007
, “
Strain Hardening Behavior of a Friction Stir Welded Magnesium Alloy
,”
Scr. Mater.
,
57
(
11
), pp.
1004
1007
.
27.
Ross
,
P. J.
,
1988
,
Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design
,
McGraw-Hill
,
New York
.
28.
Yu
,
H.
, and
Wang
,
Y.
,
2015
, “
Fracture Performance of High Strength Steels, Aluminium and Magnesium Alloys During Plastic Deformation
,”
MATEC Web of Conferences
,
Glasgow, UK
,
Aug. 6–9
, vol.
21
, p.
07001
.
You do not currently have access to this content.