Abstract

A simple, low-cost and highly efficient method of fabrication has always been the goal of manufacturing technology. In order to improve the speed of fabrication and simplify the preparation steps, this work proposes a multi-material integrated 3D printing method, aiming to obtain the desired structure from the print head in one step. As a typical example, a cylindrical Li-ion battery (LIB) with core–shell structure was integrally fabricated using this one-step multi-material integrated printing method. A multi-material print head is designed based on the structure to be printed. The inks with the characteristics of non-Newtonian fluid are developed for battery printing. Anode, cathode, separator layer, and packaging layer are easily printed simultaneously by coaxial wrapping layer by layer. The parameters of ink viscosity, printing pressure, and printing speed are studied. Electrochemical performance of the printed battery is tested with the charge and discharge capacities of the printed battery up to 147 and 99 mAh g−1 at 0.1 C rate, respectively. Compared with the traditional step-by-step printing, the proposed multi-material integrated printing method realizes the one-step printing of the battery structure, which improves manufacturing efficiency. This system can be directly extended to fabricate other integrated devices such as supercapacitors. Based on this idea, it should also be possible to design different print heads to print other multi-material devices in one step.

References

1.
Zastrow
,
M.
,
2020
, “
3D Printing Gets Bigger, Faster and Stronger
,”
Nature
,
578
(
7793
), pp.
20
23
.
2.
Xin
,
H. Z.
,
Liang
,
X.
, and
Qi
,
J. S.
,
2020
, “
Spray-Printed Conjugated Polymer on Tissue Paper for Highly Sensitive Pressure Sensors
,”
Polym. Int.
,
70
(
4
), pp.
450
456
.
3.
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Palazotto
,
A. N.
, and
Abu Al-Rub
,
R. K.
,
2018
, “
On Mechanical Properties of Cellular Steel Solids With Shell-Like Periodic Architectures Fabricated by Selective Laser Sintering
,”
ASME J. Eng. Mater. Technol.
,
141
(
2
), p.
021009
.
4.
Spear
,
D. G.
,
Palazotto
,
A. N.
, and
Kemnitz
,
R. A.
,
2021
, “
Mechanical Properties of Additively Manufactured Periodic Cellular Structures and Design Variations
,”
ASME J. Eng. Mater. Technol.
,
143
(
4
), p.
041004
.
5.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
, et al
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
6.
Symes
,
M. D.
,
Kitson
,
P. J.
,
Yan
,
J.
,
Richmond
,
C. J.
,
Cooper
,
G. J.
,
Bowman
,
R. W.
,
Vilbrandt
,
T.
, and
Cronin
,
L.
,
2012
, “
Integrated 3D-Printed Reactionware for Chemical Synthesis and Analysis
,”
Nat. Chem.
,
4
(
5
), pp.
349
354
.
7.
Ambrosi
,
A.
, and
Pumera
,
M.
,
2016
, “
3D-Printing Technologies for Electrochemical Applications
,”
Chem. Soc. Rev.
,
45
(
10
), pp.
2740
2755
.
8.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
9.
Chisholm
,
G.
,
Kitson
,
P. J.
,
Kirkaldy
,
N. D.
,
Bloor
,
L. G.
, and
Cronin
,
L.
,
2014
, “
3D Printed Flow Plates for the Electrolysis of Water: An Economic and Adaptable Approach to Device Manufacture
,”
Energy Environ. Sci.
,
7
(
9
), pp.
3026
3032
.
10.
Kong
,
Y. L.
,
Tamargo
,
I. A.
,
Kim
,
H.
,
Johnson
,
B. N.
,
Gupta
,
M. K.
,
Koh
,
T.
,
Chin
,
H.
,
Steingart
,
D. A.
,
Rand
,
B. P.
, and
Mcalpine
,
M. C.
,
2014
, “
3D Printed Quantum Dot Light-Emitting Diodes
,”
Nano Lett.
,
14
(
12
), pp.
7017
7023
.
11.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
,
Kolesky
,
D. B.
,
Wood
,
R. J.
, and
Lewis
,
J. A.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
12.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, et al
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
13.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
(
1
), pp.
1
8
.
14.
Hardin
,
J. O.
,
Ober
,
T. J.
,
Valentine
,
A. D.
, and
Lewis
,
J. A.
,
2015
, “
Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks
,”
Adv. Mater.
,
27
(
21
), pp.
3279
3284
.
15.
Derby
,
B.
,
2012
, “
Printing and Prototyping of Tissues and Scaffolds
,”
Science
,
338
(
6109
), pp.
921
926
.
16.
Zhu
,
H.
,
Ge
,
J.
,
Peng
,
Y.
,
Zhao
,
H.
,
Shi
,
L.
, and
Yu
,
S.
,
2018
, “
Dip-Coating Processed Sponge-Based Electrodes for Stretchable Zn-MnO2 Batteries
,”
Nano Res.
,
11
(
3
), pp.
1554
1562
.
17.
Sander
,
J. S.
,
Erb
,
R. M.
,
Li
,
L.
,
Gurijala
,
A.
, and
Chiang
,
Y. M.
,
2016
, “
High-Performance Battery Electrodes via Magnetic Templating,”
Nat. Energy
,
1
(
8
), pp.
1
7
.
18.
Pikul
,
J. H.
,
Gang Zhang
,
H.
,
Cho
,
J.
,
Braun
,
P. V.
, and
King
,
W. P.
,
2013
, “
High-Power Lithium Ion Microbatteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes
,”
Nat. Commun.
,
4
(
1
), pp.
1
5
.
19.
Fu
,
K.
,
Wang
,
Y.
,
Yan
,
C.
,
Yao
,
Y.
,
Dai
,
J.
,
Lacey
,
S.
,
Wang
,
Y.
, et al
,
2016
, “
Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-ion Batteries
,”
Adv. Mater.
,
28
(
13
), pp.
2587
2594
.
20.
Hu
,
J.
,
Jiang
,
Y.
,
Cui
,
S.
,
Cui
,
S.
,
Duan
,
Y.
,
Liu
,
T.
,
Hua
,
G.
, et al
,
2016
, “
Lithium-Ion Batteries: 3D-Printed Cathodes of LiMn1− xFexPO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium-Ion Battery
,”
Adv. Energy Mater.
,
6
(
18
), p.
1600856
.
21.
Mcowen
,
D. W.
,
Xu
,
S.
,
Gong
,
Y.
,
Wen
,
Y.
,
Godbey
,
G. L.
,
Gritton
,
J. E.
,
Hamann
,
T. R.
, et al
,
2018
, “
3D-Printing Electrolytes for Solid-State Batteries
,”
Adv. Mater.
,
30
(
18
), p.
1707132
.
22.
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Grotto
,
J.
, and
Lewis
,
J.
,
2018
, “
3D Printing of Customized Li-Ion Batteries With Thick Electrodes
,”
Adv. Mater.
,
30
(
16
), p.
1703027
.
23.
Chen
,
M.
,
Lee
,
H.
,
Yang
,
J.
,
Xu
,
Z.
,
Huang
,
N.
,
Chan
,
B. P.
, and
Kim
,
J. T.
,
2020
, “
Parallel, Multi-material Electrohydrodynamic 3D Nanoprinting
,”
Small
,
16
(
13
), p.
1906402
.
24.
Jang
,
S.
,
Oh
,
S.
,
Lee
,
I.
,
Kim
,
H.
, and
Cho
,
H.
,
2015
, “
3-Dimensional Circuit Device Fabrication Process Using Stereolithography and Direct Writing
,”
Int. J. Precis. Eng. Manuf.
,
16
(
7
), pp.
1361
1367
.
25.
Zhang
,
F.
,
Wei
,
M.
,
Viswanathan
,
V. V.
,
Swart
,
B.
,
Shao
,
Y.
,
Wu
,
G.
, and
Zhou
,
C.
,
2017
, “
3D Printing Technologies for Electrochemical Energy Storage
,”
Nano Energy.
,
40
, pp.
418
431
.
26.
Jiang
,
Y.
,
Wang
,
X.
,
Plog
,
J.
,
Yarin
,
A. L.
, and
Pan
,
Y.
,
2021
, “
Electrowetting-Assisted Direct Ink Writing for Low-Viscosity Liquids
,”
J. Manuf. Process
,
69
, pp.
173
180
.
27.
Rao
,
R. B.
,
Krafcik
,
K. L.
,
Morales
,
A. M.
, and
Lewis
,
J. A.
,
2005
, “
Microfabricated Deposition Nozzles for Direct-Write Assembly of Three-Dimensional Periodic Structures
,”
Adv. Mater.
,
17
(
3
), pp.
289
293
.
28.
Peng
,
H.
,
Wang
,
S.
,
Xu
,
H.
, and
Hao
,
X.
,
2017
, “
Preparation, Properties and Formation Mechanism of Cellulose/Polyvinyl Alcohol Bio-composite Hydrogel Membranes
,”
New J. Chem.
,
41
(
14
), pp.
6564
6573
.
29.
Wang
,
Y.
,
Chen
,
C.
,
Xie
,
H.
,
Gao
,
T.
,
Yao
,
Y.
,
Pastel
,
G.
,
Han
,
X.
, et al
,
2017
, “
3D-Printed All-Fiber Li-Ion Battery Toward Wearable Energy Storage
,”
Adv. Funct. Mater.
,
27
(
43
), p.
1703140
.
30.
Baddour-Hadjean
,
R.
, and
Pereira-Ramos
,
J.-P.
,
2010
, “
Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries
,”
Chem. Rev.
,
110
(
3
), pp.
1278
1319
.
31.
Yang
,
J.
,
Wang
,
J.
,
Tang
,
Y.
,
Wang
,
D.
,
Li
,
X.
,
Hu
,
Y.
,
Li
,
R.
,
Liang
,
G.
,
Shamb
,
T. K.
, and
Sun
,
X.
,
2013
, “
LiFePO 4–Graphene as a Superior Cathode Material for Rechargeable Lithium Batteries: Impact of Stacked Graphene and Unfolded Graphene
,”
Energy Environ. Sci.
,
6
(
5
), pp.
1521
1528
.
32.
Park
,
M.
,
Zhang
,
X.
,
Chung
,
M.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
.
You do not currently have access to this content.