Abstract

With the development of advanced image correlation and high-speed filming techniques, the kinematic field during the cutting process can be experimentally determined including the velocity and strain rate fields. As known, the setting parameters for the digital image correlation (DIC) as well as the optical parameters of the given camera and lighting system have a great influence on the spatial resolution and accuracy of the DIC results. In this study, the speckle pattern in terms of speckle size and intensity distribution are analyzed when using two different surface preparation methods. Moreover, the influences of the subset sizes for the image correlation on the strain rate are numerically studied. Interlaboratory measurements of the kinematic field during the orthogonal cutting of AISI 4140 were conducted with two different in-situ imaging setups. The material flow near the cutting tool edge determined from the velocity field is compared with the numerical simulation. The stagnation zone which is commonly found in the numerical simulation of the cutting process using a chamfered cubic boron nitride (CBN) tool was not observed in the experiments. Furthermore, slip-line fields were constructed from the experimentally determined strain rate components, from which the boundary conditions along the chip-free and chip-tool interface were derived.

References

1.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: a Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
2.
Rech
,
J.
,
Giovenco
,
A.
,
Courbon
,
C.
, and
Cabanettes
,
F.
,
2018
, “
Toward a New Tribological Approach to Predict Cutting Tool Wear
,”
CIRP. Ann.
,
67
(
1
), pp.
65
68
.
3.
Bergs
,
T.
,
Abouridouane
,
M.
,
Meurer
,
M.
, and
Peng
,
B.
,
2021
, “
Digital Image Correlation Analysis and Modelling of the Strain Rate in Metal Cutting
,”
CIRP Ann. - Manufact. Technol.
,
70
(
1
), pp.
45
48
.
4.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2020
, “
Thermomechanical Coupling Investigation in Ti-6Al-4V Orthogonal Cutting: Experimental and Numerical Confrontation
,”
Int. J. Mech. Sci.
,
169
, p.
105322
.
5.
Childs
,
T.
,
1971
, “
A New Visio-plasticity Technique and a Study of Curly Chip Formation
,”
Int. J. Mech. Sci.
,
13
(
4
), pp.
373
387
.
6.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
654
.
7.
Sadat
,
A.
, and
Reddy
,
M.
,
1992
, “
Surface Integrity of Inconel-718 Nickel-Base Superalloy Using Controlled and Natural Contact Length Tools. Part I: Lubricated
,”
Exp. Mech.
,
32
(
3
), pp.
282
288
.
8.
Ghadbeigi
,
H.
,
Bradbury
,
S.
,
Pinna
,
C.
, and
Yates
,
J.
,
2008
, “
Determination of Micro-Scale Plastic Strain Caused by Orthogonal Cutting
,”
Int. J. Mach. Tools. Manuf.
,
48
(
2
), pp.
228
235
.
9.
Nie
,
G.-C.
,
Zhang
,
K.
,
Outeiro
,
J.
,
Caruso
,
S.
,
Umbrello
,
D.
,
Ding
,
H.
, and
Zhang
,
X.-M.
,
2020
, “
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of Aisi 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
034501
.
10.
Baizeau
,
T.
,
Campocasso
,
S.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2015
, “
Effect of Rake Angle on Strain Field During Orthogonal Cutting of Hardened Steel With C-BN Tools
,”
Proc. CIRP
,
31
, pp.
166
171
.
11.
Harzallah
,
M.
,
Pottier
,
T.
,
Gilblas
,
R.
,
Landon
,
Y.
,
Mousseigne
,
M.
, and
Senatore
,
J.
,
2018
, “
A Coupled In-Situ Measurement of Temperature and Kinematic Fields in Ti-6Al-4V Serrated Chip Formation At Micro-Scale
,”
Int. J. Mach. Tools. Manuf.
,
130
, pp.
20
35
.
12.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2018
, “
Inverse Identification of Material Plastic Constitutive Parameters Based on the DIC Determined Workpiece Deformation Fields in Orthogonal Cutting
,”
Proc. CIRP
,
71
, pp.
134
139
.
13.
Thimm
,
B.
,
Glavas
,
A.
,
Reuber
,
M.
, and
Christ
,
H.-J.
,
2021
, “
Determination of Chip Speed and Shear Strain Rate in Primary Shear Zone Using Digital Image Correlation (DIC) in Linear-Orthogonal Cutting Experiments
,”
J. Mater. Process. Technol.
,
289
, p.
116957
.
14.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Yang
,
Z.-Y.
, and
Ding
,
H.
,
2021
, “
Characterization of Material Strain and Thermal Softening Effects in the Cutting Process
,”
Int. J. Mach. Tools. Manuf.
,
160
, p.
103672
.
15.
Denkena
,
B.
,
Krödel
,
A.
, and
Beblein
,
S.
,
2021
, “
A Novel Approach to Determine the Velocity Dependency of the Friction Behavior During Machining by Means of Digital Particle Image Velocimetry (DPIV)
,”
CIRP. J. Manuf. Sci. Technol.
,
32
, pp.
81
90
.
16.
Arriola
,
I.
,
Whitenton
,
E.
,
Heigel
,
J.
, and
Arrazola
,
P.
,
2011
, “
Relationship Between Machinability Index and In-Process Parameters During Orthogonal Cutting of Steels
,”
CIRP Ann. - Manufact. Technol.
,
60
(
1
), pp.
93
96
.
17.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2016
, “
A Study on the Orthogonal Cutting Mechanism Based on Experimental Determined Displacement and Temperature Fields
,”
Proc. CIRP
,
46
, pp.
35
38
.
18.
Guo
,
Y.
,
Chen
,
J.
, and
Saleh
,
A.
,
2020
, “
In Situ Analysis of Deformation Mechanics of Constrained Cutting Toward Enhanced Material Removal
,”
ASME J. Manuf. Sci. Eng.
,
142
(
2
), p.
021002
.
19.
Davis
,
B.
,
Dabrow
,
D.
,
Newell
,
R.
,
Miller
,
A.
,
Schueller
,
J.
,
Xiao
,
G.
,
Liang
,
S.
,
Hartwig
,
K.
,
Ruzycki
,
N.
,
Sohn
,
Y.
, and
Huang
,
Y.
,
2018
, “
Chip Morphology and Chip Formation Mechanisms During Machining of ECAE-Processed Titanium
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031008
.
20.
Davis
,
B.
,
Dabrow
,
D.
,
Ifju
,
P.
,
Xiao
,
G.
,
Liang
,
S.
, and
Huang
,
Y.
,
2018
, “
Study of the Shear Strain and Shear Strain Rate Progression During Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051007
.
21.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J.
,
M’Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.
22.
Meurer
,
M.
,
Augspurger
,
T.
,
Tekkaya
,
B.
,
Schraknepper
,
D.
,
Lima
,
A. P.
, and
Bergs
,
T.
,
2020
, “
Development of a Methodology for Strain Field Analysis During Orthogonal Cutting
,”
Proc. CIRP
,
87
, pp.
444
449
.
23.
Outeiro
,
J.
,
Campocasso
,
S.
,
Denguir
,
L.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP. Ann.
,
64
(
1
), pp.
53
56
.
24.
Arif
,
R.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Marcon
,
B.
,
2020
, “
Investigations on Strain Hardening During Cutting of Heat-Resistant Austenitic Stainless Steel
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051005
.
25.
Tausendfreund
,
A.
,
Stöbener
,
D.
, and
Fischer
,
A.
,
2020
, “
In-process Workpiece Displacement Measurements Under the Rough Environments of Manufacturing Technology
,”
Proc. CIRP
,
87
, pp.
409
414
.
26.
Baizeau
,
T.
,
Campocasso
,
S.
,
Fromentin
,
G.
, and
Besnard
,
R.
,
2017
, “
Kinematic Field Measurements During Orthogonal Cutting Tests Via DIC With Double-Frame Camera and Pulsed Laser Lighting
,”
Experimental Mechanics
,
57
(
4
), pp.
581
591
.
27.
Zhang
,
D.
,
Zhang
,
X.-M.
,
Xu
,
W.-J.
, and
Ding
,
H.
,
2017
, “
Stress Field Analysis in Orthogonal Cutting Process Using Digital Image Correlation Technique
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031001
.
28.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2018
, “
Hybrid Digital Image Correlation-finite Element Modeling Approach for Modeling of Orthogonal Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041018
.
29.
Yang
,
Z.-Y.
,
Zhang
,
X.-M.
,
Nie
,
G.-C.
,
Zhang
,
D.
, and
Ding
,
H.
,
2021
, “
A Comprehensive Experiment-based Approach to Generate Stress Field and Slip Lines in Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071014
.
30.
Berfield
,
T.
,
Patel
,
J.
,
Shimmin
,
R.
,
Braun
,
P.
,
Lambros
,
J.
, and
Sottos
,
N.
,
2007
, “
Micro-and Nanoscale Deformation Measurement of Surface and Internal Planes Via Digital Image Correlation
,”
Exp. Mech.
,
47
(
1
), pp.
51
62
.
31.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
A Methodology for High Resolution Digital Image Correlation in High Temperature Experiments
,”
Rev. Sci. Instrum.
,
86
(
3
), p.
035111
.
32.
Zouabi
,
H.
,
Calamaz
,
M.
,
Wagner
,
V.
,
Cahuc
,
O.
, and
Dessein
,
G.
,
2021
, “
Kinematic Fields Measurement During Orthogonal Cutting Using Digital Images Correlation: a Review
,”
J. Manufact. Mater. Process.
,
5
(
1
), p.
7
.
33.
Buchkremer
,
S.
, and
Klocke
,
F.
,
2017
, “
Modeling Nanostructural Surface Modifications in Metal Cutting by An Approach of Thermodynamic Irreversibility: Derivation and Experimental Validation
,”
Conti. Mech. Thermodyn.
,
29
(
1
), pp.
271
289
.
34.
Buchkremer
,
S.
,
Klocke
,
F.
, and
Döbbeler
,
B.
,
2016
, “
Impact of the Heat Treatment Condition of Steel AISI 4140 on Its Frictional Contact Behavior in Dry Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121006
.
35.
Bianco
,
V.
,
Memmolo
,
P.
,
Leo
,
M.
,
Montresor
,
S.
,
Distante
,
C.
,
Paturzo
,
M.
,
Picart
,
P.
,
Javidi
,
B.
, and
Ferraro
,
P.
,
2018
, “
Strategies for Reducing Speckle Noise in Digital Holography
,”
Light: Sci. Appl.
,
7
(
1
), p.
48
.
36.
Lin
,
H.
, and
Yu
,
P.
,
2007
, “
Speckle Mechanism in Holographic Optical Imaging
,”
Optics Express
,
15
(
25
), pp.
16322
16327
.
37.
Blaber
,
J.
,
Adair
,
B.
, and
Antoniou
,
A.
,
2015
, “
Ncorr: Open-Source 2D Digital Image Correlation Matlab Software
,”
Exp. Mech.
,
55
(
6
), pp.
1105
1122
.
38.
Xu
,
X.
,
Su
,
Y.
,
Cai
,
Y.
,
Cheng
,
T.
, and
Zhang
,
Q.
,
2015
, “
Effects of Various Shape Functions and Subset Size in Local Deformation Measurements Using DIC
,”
Exp. Mech.
,
55
(
8
), pp.
1575
1590
.
39.
Gu
,
G.
,
2015
, “
A Comparative Study of Random Speckle Pattern Simulation Models in Digital Image Correlation
,”
Optik
,
126
(
23
), pp.
3713
3716
.
40.
Ren
,
H.
, and
Altintas
,
Y.
,
2000
, “
Mechanics of Machining with Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
650
659
.
41.
Karpat
,
Y.
, and
özel
,
T.
,
2008
, “
Analytical and Thermal Modeling of High-Speed Machining With Chamfered Tools
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), pp.
011001
.
42.
Guo
,
Y.
,
Compton
,
W.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
471
(
2178
), pp.
20150194
.
43.
Fang
,
N.
,
2003
, “
Slip-line Modeling of Machining With a Rounded-Edge Tool - Part I: New Model and Theory
,”
J. Mech. Phys. Solids.
,
51
(
4
), pp.
715
742
.
You do not currently have access to this content.