Abstract

This paper presents an analytical thermo-mechanical model of shear localization and shear band formation in orthogonal cutting of high-strength metallic alloys. The deformation process of the workpiece material includes three stages: homogeneous deformation, shear localization, and chip segmentation. A boundary layer analysis is used to analytically predict the temperature, stress, and strain rate variations in the primary shear zone associated with the shear localization. The predictions of shear band spacing and width from the proposed model are verified by experimental characterization of the chip morphology. The rolling of shear bands on the tool rake face is discussed from the experimental observations. The cutting tool temperature, which is influenced by the heat generated during the shear band formation, is simulated and compared with finite element simulations. The proposed analytical model reveals the fundamental mechanism of the complete shear localization process in orthogonal cutting and predicts the stress and temperature variations with high computational efficiency.

References

1.
Pramanik
,
A.
,
2014
, “
Problems and Solutions in Machining of Titanium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
919
928
.
2.
Pervaiz
,
S.
,
Rashid
,
A.
,
Deiab
,
I.
, and
Nicolescu
,
M.
,
2014
, “
Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review
,”
Mater. Manuf. Process.
,
29
(
3
), pp.
219
252
.
3.
Sagapuram
,
D.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Mann
,
J. B.
,
M’Saoubi
,
R.
,
Sugihara
,
T.
, and
Chandrasekar
,
S.
,
2020
, “
On the Cutting of Metals: A Mechanics Viewpoint
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110808
.
4.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
In Situ Analysis of Shear Bands and Boundary Layer Formation in Metals
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190519
.
5.
Burns
,
T. J.
, and
Davies
,
M. A.
,
2002
, “
On Repeated Adiabatic Shear Band Formation During High-Speed Machining
,”
Int. J. Plast.
,
18
(
4
), pp.
487
506
.
6.
Zhou
,
F.
,
Wright
,
T.
, and
Ramesh
,
K.
,
2006
, “
A Numerical Methodology for Investigating the Formation of Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
,
54
(
5
), pp.
904
926
.
7.
Wright
,
T. W.
, and
Walter
,
J. W.
,
1987
, “
On Stress Collapse in Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
,
35
(
6
), pp.
701
720
.
8.
Komanduri
,
R.
, and
Von Turkovich
,
B.
,
1981
, “
New Observations on the Mechanism of Chip Formation when Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
.
9.
Komanduri
,
R.
,
1982
, “
Some Clarifications on the Mechanics of Chip Formation when Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
10.
Komanduri
,
R.
, and
Hou
,
Z.-B.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), p.
2995
.
11.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
12.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
13.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2018
, “
A Common Mechanism for Evolution of Single Shear Bands in Large-Strain Deformation of Metals
,”
Philos. Mag.
,
98
(
36
), pp.
3267
3299
.
14.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Viscous Shear Banding in Cutting of Metals
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111004
.
15.
Molinari
,
A.
,
Soldani
,
X.
, and
Miguélez
,
M.
,
2013
, “
Adiabatic Shear Banding and Scaling Laws in Chip Formation With Application to Cutting of Ti–6Al–4V
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2331
2359
.
16.
Wright
,
T.
, and
Ockendon
,
H.
,
1996
, “
A Scaling Law for the Effect of Inertia on the Formation of Adiabatic Shear Bands
,”
Int. J. Plast.
,
12
(
7
), pp.
927
934
.
17.
Molinari
,
A.
,
1997
, “
Collective Behavior and Spacing of Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
,
45
(
9
), pp.
1551
1575
.
18.
Grady
,
D.
, and
Kipp
,
M.
,
1987
, “
The Growth of Unstable Thermoplastic Shear With Application to Steady-Wave Shock Compression in Solids
,”
J. Mech. Phys. Solids
,
35
(
1
), pp.
95
119
.
19.
Davis
,
B.
,
Dabrow
,
D.
,
Newell
,
R.
,
Miller
,
A.
,
Schueller
,
J. K.
,
Xiao
,
G.
,
Liang
,
S. Y.
,
Hartwig
,
K. T.
,
Ruzycki
,
N. J.
,
Sohn
,
Y.
, and
Huang
,
Y.
,
2018
, “
Chip Morphology and Chip Formation Mechanisms During Machining of ECAE-Processed Titanium
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031008
.
20.
Sun
,
J.
,
Ke
,
Q.
, and
Chen
,
W.
,
2019
, “
Material Instability Under Localized Severe Plastic Deformation During High Speed Turning of Titanium Alloy Ti-6.5 AL-2Zr-1Mo-1V
,”
J. Mater. Process. Technol.
,
264
, pp.
119
128
.
21.
Davies
,
M. A.
,
Chou
,
Y.
, and
Evans
,
C. J.
,
1996
, “
On Chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning
,”
CIRP Ann.
,
45
(
1
), pp.
77
82
.
22.
Davies
,
M. A.
,
Burns
,
T. J.
, and
Evans
,
C. J.
,
1997
, “
On the Dynamics of Chip Formation in Machining Hard Metals
,”
CIRP Ann.
,
46
(
1
), pp.
25
30
.
23.
Burns
,
T. J.
, and
Davies
,
M. A.
,
1997
, “
Nonlinear Dynamics Model for Chip Segmentation in Machining
,”
Phys. Rev. Lett.
,
79
(
3
), p.
447
.
24.
Davies
,
M. A.
, and
Burns
,
T. J.
,
2001
, “
Thermomechanical Oscillations in Material Flow During High-Speed Machining
,”
Philos. Trans. R. Soc. Lond., Ser. A
,
359
(
1781
), pp.
821
846
.
25.
Dong
,
G.
,
Zhaopeng
,
H.
,
Rongdi
,
H.
,
Yanli
,
C.
, and
Muguthu
,
J.
,
2011
, “
Study of Cutting Deformation in Machining Nickel-Based Alloy Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
520
527
.
26.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Evidence for Bingham Plastic Boundary Layers in Shear Banding of Metals
,”
Extreme Mech. Lett.
,
25
, pp.
27
36
.
27.
Semiatin
,
S.
, and
Rao
,
S.
,
1983
, “
Shear Localization During Metal Cutting
,”
Mater. Sci. Eng.
,
61
(
2
), pp.
185
192
.
28.
Recht
,
R.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
.
29.
Ye
,
G.
,
Jiang
,
M.
,
Xue
,
S.
,
Ma
,
W.
, and
Dai
,
L.
,
2018
, “
On the Instability of Chip Flow in High-speed Machining
,”
Mech. Mater.
,
116
, pp.
104
119
.
30.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2019
, “
Nucleation and Boundary Layer Growth of Shear Bands in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101005
.
31.
Walter
,
J.
,
1992
, “
Numerical Experiments on Adiabatic Shear Band Formation in One Dimension
,”
Int. J. Plast.
,
8
(
6
), pp.
657
693
.
32.
Wright
,
T.
, and
Ravichandran
,
G.
,
1997
, “
Canonical Aspects of Adiabatic Shear Bands
,”
Int. J. Plast.
,
13
(
4
), pp.
309
325
.
33.
Glimm
,
J. G.
,
Plohr
,
B. J.
, and
Sharp
,
D. H.
,
1993
, “
Conservative Formulation of Large Deformation Plasticity
,”
Appl. Mech. Rev.
,
46
(
12
), pp.
519
526
.
34.
Glimm
,
J. G.
,
Plohr
,
B. J.
, and
Sharp
,
D. H.
,
1996
, “
Tracking of Shear Bands I. The One-Dimensional Case
,”
Mech. Mater.
,
24
(
1
), pp.
31
41
.
35.
Olmstead
,
W.
,
Nemat-Nasser
,
S.
, and
Ni
,
L.
,
1994
, “
Shear Bands As Surfaces of Discontinuity
,”
J. Mech. Phys. Solids
,
42
(
4
), pp.
697
709
.
36.
DiLellio
,
J.
, and
Olmstead
,
W. E.
,
1997
, “
Temporal Evolution of Shear Band Thickness
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
345
359
.
37.
DiLellio
,
J.
, and
Olmstead
,
W. E.
,
2003
, “
Numerical Solution of Shear Localization in Johnson–Cook Materials
,”
Mech. Mater.
,
35
(
3–6
), pp.
571
580
.
38.
Childs
,
T. H.
,
Arrazola
,
P.-J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
.
39.
Dodd
,
B.
, and
Bai
,
Y.
,
2014
,
Introduction To Adiabatic Shear Localization (Revised Edition)
,
Imperial College Press
,
London
.
40.
Batra
,
R.
, and
Ko
,
K.-I.
,
1992
, “
An Adaptive Mesh Refinement Technique for the Analysis of Shear Bands in Plane Strain Compression of a Thermoviscoplastic Solid
,”
Comput. Mech.
,
10
(
6
), pp.
369
379
.
41.
Oxley
,
P. L. B.
, and
Shaw
,
M. C.
,
1990
, “
Mechanics of Machining: An Analytical Approach to Assessing Machinability
,”
J. Appl. Mech. Mar
,
57
(
1
), pp.
253
253
.
42.
Okushima
,
K.
, and
Hitomi
,
K.
,
1961
, “
An Analysis of the Mechanism of Orthogonal Cutting and Its Application to Discontinuous Chip Formation
,”
J. Eng. Ind.
,
83
(
4
), pp.
545
555
.
43.
Vinogradov
,
A.
, and
Estrin
,
Y.
,
2018
, “
Analytical and Numerical Approaches to Modelling Severe Plastic Deformation
,”
Prog. Mater. Sci.
,
95
, pp.
172
242
.
44.
Wright
,
T. W.
,
2002
,
The Physics and Mathematics of Adiabatic Shear Bands
,
Cambridge University Press
,
Cambridge
.
45.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
John Wiley & Sons
,
Hoboken, NJ
.
46.
Bai
,
Y.
,
1982
, “
Thermo-plastic Instability in Simple Shear
,”
J. Mech. Phys. Solids
,
30
(
4
), pp.
195
207
.
47.
Yadav
,
S.
,
Feng
,
G.
, and
Sagapuram
,
D.
,
2019
, “
Dynamics of Shear Band Instabilities in Cutting of Metals
,”
CIRP Ann.
,
68
(
1
), pp.
45
48
.
48.
Haberman
,
R.
,
2012
,
Applied Partial Differential Equations With Fourier Series and Boundary Value Problems
,
Pearson Higher Education
,
Hoboken, NJ
.
49.
Shaw
,
M. C.
, and
Cookson
,
J.
,
2005
,
Metal Cutting Principles
, Vol.
2
,
Oxford University Press
,
New York
.
50.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
51.
Gao
,
C.
, and
Zhang
,
L.
,
2013
, “
Effect of Cutting Conditions on the Serrated Chip Formation in High-Speed Cutting
,”
Mach. Sci. Technol.
,
17
(
1
), pp.
26
40
.
52.
Zorev
,
N. N.
,
1966
,
Metal Cutting Mechanics
,
Pergamon Press
,
Oxford
.
53.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.
54.
Ye
,
G.
,
Xue
,
S.
,
Jiang
,
M.
,
Tong
,
X.
, and
Dai
,
L.
,
2013
, “
Modeling Periodic Adiabatic Shear Band Evolution During High Speed Machining Ti-6Al-4V Alloy
,”
Int. J. Plast.
,
40
, pp.
39
55
.
55.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1992
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
,
Oxford, UK
.
56.
Bäker
,
M.
,
Rösler
,
J.
, and
Siemers
,
C.
,
2002
, “
A Finite Element Model of High Speed Metal Cutting with Adiabatic Shearing
,”
Comput. Struct.
,
80
(
5–6
), pp.
495
513
.
57.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2015
, “
On the Introduction of Adaptive Mass Scaling in a Finite Element Model of Ti6Al4V Orthogonal Cutting
,”
Simul. Model. Pract. Theory
,
53
, pp.
1
14
.
58.
Sadeghifar
,
M.
,
Sedaghati
,
R.
,
Jomaa
,
W.
, and
Songmene
,
V.
,
2018
, “
A Comprehensive Review of Finite Element Modeling of Orthogonal Machining Process: Chip Formation and Surface Integrity Predictions
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9
), pp.
3747
3791
.
59.
Arrazola
,
P.-J.
,
Aristimuno
,
P.
,
Soler
,
D.
, and
Childs
,
T.
,
2015
, “
Metal Cutting Experiments and Modelling for Improved Determination of Chip/Tool Contact Temperature by Infrared Thermography
,”
CIRP Ann.
,
64
(
1
), pp.
57
60
.
You do not currently have access to this content.