Abstract

Manufacturing is a significant contributor to global greenhouse gas emissions and there is an urgent need to reduce the energy consumption of production processes. An important step towards this goal is proactively estimating process energy consumption at the detailed design stage. This is a challenging task as variabilities in factors such as process specifications, machine tool architecture, and workpiece geometry can significantly reduce the accuracy of the estimated energy consumption. This paper discusses a methodology for machine-specific energy estimation in milling processes at the detailed design stage based on the unit process life cycle inventory (UPLCI) model. We develop an adjusted UPLCI model that includes adjustment factors for uncertainties in machine tool specifications and the specific cutting energy of a workpiece material. These adjustment factors are calculated through experimental measurement of energy consumption for a reference test part on a specific machine tool. To validate the adjusted UPLCI model, we conducted a case study that measured the energy consumption for machining three parts made of Aluminum 6082 on two separate three-axis vertical milling machines, a Chevalier QP2040-L and a Leadwell MCV-OP. Results show that the UPLCI model consistently overestimated the total energy consumption for machining the three validation parts across both machine tools. We also found that the adjusted UPLCI model significantly reduced the estimation errors for the same tests for both machine tools.

References

1.
The World Bank
,
2020
, “
CO2 Emissions by Sector and Source
,” https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions, Accessed January 1, 2020.
2.
Calvanese
,
M. L.
,
Albertelli
,
P.
,
Matta
,
A.
, and
Taisch
,
M.
,
2013
, “Analysis of Energy Consumption in CNC Machining Centers and Determination of Optimal Cutting Conditions,”
Re-Engineering Manufacturing for Sustainability
,
A.
Nee
,
B.
Song
, and
S. K.
Ong
, eds.,
Springer
,
Singapore
, pp.
227
232
.
3.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
4.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
,
I.
,
Clarens
,
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
. 10.1115/1.4024040
5.
Overcash
,
M.
, and
Twomey
,
J.
,
2012
, “Unit Process Life Cycle Inventory (UPLCI)—A Structured Framework to Complete Product Life Cycle Studies,”
Leveraging Technology for a Sustainable World
,
D.
Dornfeld
, and
B.
Linke
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
1
4
.
6.
Overcash
,
M.
,
Griffing
,
E.
,
Vozzola
,
E.
,
Twomey
,
J.
,
Flanagan
,
W.
, and
Isaacs
,
J.
,
2018
, “
Advancements in Unit Process Life Cycle Inventories (UPLCI) Tools
,”
Procedia CIRP
,
69
, pp.
447
450
. 10.1016/j.procir.2017.11.138
7.
Jawahir
,
I.
,
Schoop
,
J.
,
Kaynak
,
Y.
,
Balaji
,
A.
,
Ghosh
,
R.
, and
Lu
,
T.
,
2020
, “
Progress Toward Modeling and Optimization of Sustainable Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110811
. 10.1115/1.4047926
8.
Kalla
,
D.
,
Twomey
,
J.
, and
Overcash
,
M.
,
2009
, “
MR 3 Milling Process Unit Process Life Cycle Inventory
.”
9.
Raman
,
A. S.
,
Harper
,
D.
,
Haapala
,
K. R.
,
Linke
,
B. S.
,
Bernstein
,
W. Z.
, and
Morris
,
K. C.
,
2019
, “
Challenges in Representing Manufacturing Processes for Systematic Sustainability Assessments: Workshop on June 21, 2018
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 2: Processes;Materials
,
Erie, PA
,
June 10–14
,
American Society of Mechanical Engineers Digital Collection
, p.
V002T03A012
. https://doi.org/10.1115/MSEC2019-3032
10.
ASTM E3012
,
2020
, “
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes
,” ASTM (Revision in print).
11.
Bernstein
,
W. Z.
,
Lechevalier
,
D.
, and
Libes
,
D.
,
2018
, “
Ump Builder: Capturing and Exchanging Manufacturing Models for Sustainability
,”
Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Bioand Sustainable Manufacturing
,
College Station, TX
,
June 18–22
, ASME, p.
V001T05A022
. https://doi.org/10.1115/MSEC2018-6331
12.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Totorikaguena
,
M. A.
,
Ilvig
,
C. F.
, and
Ørskov
,
K. B.
,
2019
, “
Generating Contextual Design for Environment Principles in Sustainable Manufacturing Using Visual Analytics
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021016
. 10.1115/1.4041835
13.
Bernstein
,
W. Z.
,
Tensa
,
M.
,
Praniewicz
,
M.
,
Kwon
,
S.
, and
Ramanujan
,
D.
,
2020
, “
An Automated Workflow for Integrating Environmental Sustainability Assessment Into Parametric Part Design Through Standard Reference Models
,” Procedia CIRP.
14.
Chudy
,
R.
,
Grzesik
,
W.
, and
Zak
,
K.
,
2018
, “Influence of Machining Conditions on the Energy Consumption and Productivity in Finish Hard Turning,”
Advances in Manufacturing. Lecture Notes in Mechanical Engineering
,
A.
Hamrol
,
O.
Ciszak
,
S.
Legutko
, and
M.
Jurczyk
, eds.,
Springer
,
Cham
, pp.
697
705
.
15.
Fridriksson
,
L.
,
1979
, “
Non-Productive Time in Conventional Metal Cutting
,”
Technical Report, Design for Manufacturability Program
,
University of Massachusetts
,
Amherst
, Report No. 3.
16.
Japanese Standards Association
,
2010
, “
Machine Tools–Test Methods for Electric Power Consumption—Part 1: Machining Centres
,” Technical Report.
17.
Behrendt
,
T.
,
Zein
,
A.
, and
Min
,
S.
,
2012
, “
Development of an Energy Consumption Monitoring Procedure for Machine Tools
,”
CIRP Ann.
,
61
(
1
), pp.
43
46
. 10.1016/j.cirp.2012.03.103
18.
Kellens
,
K.
,
Dewulf
,
W.
,
Overcash
,
M.
,
Hauschild
,
M. Z.
, and
Duflou
,
J. R.
,
2012
, “
Methodology for Systematic Analysis and Improvement of Manufacturing Unit Process Life Cycle Inventory (UPLCI) CO2PE! Initiative (Cooperative Effort on Process Emissions in Manufacturing). Part 2: Case Studies
,”
Int. J. Life Cycle Assess.
,
17
(
2
), pp.
242
251
. 10.1007/s11367-011-0352-0
19.
Wall
,
R.
,
2014
, “
A Report on the Properties of the YHDC Current Transformer and Its Suitability for Use With the OpenEnergy Monitor,” Technical Report
, https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/files/YhdcCTReportIss6.pdf
20.
Shi
,
K. N.
,
Zhang
,
D. H.
,
Liu
,
N.
,
Wang
,
S. B.
,
Ren
,
J. X.
, and
Wang
,
S. L.
,
2018
, “
A Novel Energy Consumption Model for Milling Process Considering Tool Wear Progression
,”
J. Clean. Prod.
,
184
, pp.
152
159
. 10.1016/j.jclepro.2018.02.239
21.
Zhou
,
L.
,
Li
,
F.
,
Zhao
,
F.
,
Li
,
J.
, and
Sutherland
,
J. W.
,
2019
, “
Characterizing the Effect of Process Variables on Energy Consumption in End Milling
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2837
2848
. 10.1007/s00170-018-3015-5
22.
Bhinge
,
R.
,
Biswas
,
N.
,
Dornfeld
,
D.
,
Park
,
J.
,
Law
,
K. H.
,
Helu
,
M.
, and
Rachuri
,
S.
,
2014
, “
An Intelligent Machine Monitoring System for Energy Prediction Using a Gaussian Process Regression
,”
2014 IEEE International Conference on Big Data (Big Data)
,
Washington, DC
,
Oct. 27–30
,
IEEE
, pp.
978
986
.
23.
Park
,
J.
,
Law
,
K. H.
,
Bhinge
,
R.
,
Biswas
,
N.
,
Srinivasan
,
A.
,
Dornfeld
,
D. A.
,
Helu
,
M.
, and
Rachuri
,
S.
,
2015
, “
A Generalized Data-Driven Energy Prediction Model With Uncertainty for a Milling Machine Tool Using Gaussian Process
,”
Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference. Volume 2: Materials;Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
,
Charlotte, NC
,
June 8–12
,
American Society of Mechanical Engineers Digital Collection
, p. V002T05A010. https://doi.org/10.1115/MSEC2015-9354
24.
Ajilo
,
D.
,
2018
, “
eyeDNA: Tool Condition Monitoring for a Desktop Cnc Milling Machine
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
25.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
. 10.1115/1.4047620
You do not currently have access to this content.