Abstract

A preliminary experimental study on “warm ultrasonic impact-assisted laser metal deposition” (WUI-LMD) is reported, and such a study is rare in literature to the authors’ knowledge. In WUI-LMD, an ultrasonic impact treatment (UIT) tip is placed near the laser spot for in-situ treatment of laser-deposited warm solid material, and the UIT and LMD processes proceed simultaneously. Under the conditions investigated, it is found that in-situ UIT during WUI-LMD can be much more effective in reducing porosity than a post-process UIT. Possible underlying mechanisms are analyzed. WUI-LMD has great potential to reduce defects and improve mechanical properties without increasing manufacturing time.

References

1.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
.
2.
Shamsaei
,
N.
,
Yadollahi
,
A.
,
Bian
,
L.
, and
Thompson
,
S. M.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Addit. Manuf.
,
8
, pp.
12
35
.
3.
Karnati
,
S.
,
Sparks
,
T. E.
,
Liou
,
F.
,
Newkirk
,
J. W.
,
Taminger
,
K. M. B.
, and
Seufzer
,
W. J.
,
2015
, “
Laser Metal Deposition of Functionally Gradient Materials From Elemental Copper and Nickel Powders
,”
Proceedings of the 26th Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
, pp.
789
802
.
4.
Ruan
,
J.
,
Tang
,
L.
,
Sparks
,
T. E.
,
Landers
,
R. G.
, and
Liou
,
F.
,
2008
, “
Direct 3D Layer Metal Deposition and Toolpath Generation
,”
Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
New York
,
Aug. 3–6
.
5.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2013, March
, “
Laser Metal Deposition of Ti6Al4V: a Study on the Effect of Laser Power on Microstructure and Microhardness
,”
Proceedings of the International MultiConference of Engineers and Computer Scientists
,
Hong Kong
,
Mar. 13–15
.
6.
Bayode
,
A.
,
Akinlabi
,
E. T.
, and
Pityana
,
S.
,
2016, June
, “
Characterization of Laser Metal Deposited 316L Stainless Steel
,”
Proceedings of the World Congress on Engineering
,
London, UK
,
June 29–July 1
.
7.
Sun
,
G.
,
Zhou
,
R.
,
Lu
,
J.
, and
Mazumder
,
J.
,
2015
, “
Evaluation of Defect Density, Microstructure, Residual Stress, Elastic Modulus, Hardness and Strength of Laser-Deposited AISI 4340 Steel
,”
Acta Mater.
,
84
, pp.
172
189
. 10.1016/j.actamat.2014.09.028
8.
Pinkerton
,
A. J.
,
Wang
,
W.
, and
Li
,
L.
,
2008
, “
Component Repair Using Laser Direct Metal Deposition
,”
Proc. Inst. Mech. Eng. B
,
222
(
7
), pp.
827
836
. 10.1243/09544054JEM1008
9.
Gabriel
,
T.
,
Rommel
,
D.
,
Scherm
,
F.
,
Gorywoda
,
M.
, and
Glatzel
,
U.
,
2017
, “
Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets
,”
Materials
,
10
(
3
), p.
279
. 10.3390/ma10030279
10.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
11.
Sharratt
,
B. M.
,
2015
, Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes: A Literature Review. Sharratt Research and Consulting Inc., Victoria, BC, Contract Report No. DRDC-RDDC-2015-C035.
12.
Wu
,
X.
,
2007
, “
A Review of Laser Fabrication of Metallic Engineering Components and of Materials
,”
Mater. Sci. Technol.
,
23
(
6
), pp.
631
640
. 10.1179/174328407X179593
13.
Sterling
,
A. J.
,
Torries
,
B.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Seely
,
D. W.
,
2016
, “
Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti–6Al–4 V
,”
Mater. Sci. Eng. A
,
655
, pp.
100
112
. 10.1016/j.msea.2015.12.026
14.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
. 10.1115/1.4026524
15.
Wang
,
Y.
, and
Shi
,
J.
,
2019
, “
Microstructure and Properties of Inconel 718 Fabricated by Directed Energy Deposition with in-Situ Ultrasonic Impact Peening
,”
Metallurgical Mater. Trans. B
,
50
(
6
), pp.
2815
2827
. 10.1007/s11663-019-01672-3
16.
Li
,
N.
,
Sun
,
J.
,
Zhang
,
G.
,
Lu
,
J.
, and
Li
,
Y.
,
2017
, “
Effect of Ultrasonic Impact Peening on TI-6AL-4V Laser Deposition Shaping
,”
J. Laser Appl.
,
29
(
2
), p.
022505
. 10.2351/1.4983519
17.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
Manufacturing Engineering and Technology
, Sixth ed.,
Pearson Prentice Hall
.
18.
Qin
,
L.
,
Wang
,
W.
, and
Yang
,
G.
,
2013
, “
Experimental Study on Laser Metal Deposition of FGMs With Ultrasonic Vibration
,”
Appl. Mech. Mater.
,
271
, pp.
131
135
.
19.
Chen
,
X.
,
Sparks
,
T.
,
Ruan
,
J.
, and
Liou
,
F.
,
2012
, “
Study of Ultrasonic Vibration Laser Metal Deposition Process
,”
ASME/ISCIE 2012 International Symposium on Flexible Automation
,
American Society of Mechanical Engineers Digital Collection
, pp.
445
450
.
20.
Todaro
,
C. J.
,
Easton
,
M. A.
,
Qiu
,
D.
,
Zhang
,
D.
,
Bermingham
,
M. J.
,
Lui
,
E. W.
,
Brandt
,
M.
,
StJohn
,
D. H.
, and
Qian
,
M.
,
2020
, “
Grain Structure Control During Metal 3D Printing by High-Intensity Ultrasound
,”
Nat. Commun.
,
11
(
1
), p.
142
. 10.1038/s41467-019-13874-z
21.
Mordyuk
,
B. N.
, and
Prokopenko
,
G. I.
,
2007
, “
Ultrasonic Impact Peening for the Surface Properties’ Management
,”
J. Sound Vib.
,
308
(
3–5
), pp.
855
866
. 10.1016/j.jsv.2007.03.054
22.
Wick
,
A.
,
Schulze
,
V.
, and
Vöhringer
,
O.
,
2000
, “
Effects of Warm Peening on Fatigue Life and Relaxation Behaviour of Residual Stresses in AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
293
(
1–2
), pp.
191
197
. 10.1016/S0921-5093(00)01035-2
23.
Ye
,
H.
,
Ye
,
K.
,
Guo
,
B. G.
,
Le
,
F. B.
,
Wei
,
C.
,
Sun
,
X.
,
Wang
,
G. Y.
, and
Liu
,
Y.
,
2020
, “
Effects of Combining Ultrasonic Micro-Forging Treatment with Laser Metal Wire Deposition on Microstructural and Mechanical Properties in Ti–6Al–4 V Alloy
,”
Mater. Charact.
,
162
, p.
110187
. 10.1016/j.matchar.2020.110187
24.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
. 10.1038/nmeth.2089
You do not currently have access to this content.