Abstract

Laser-induced plasma micro-machining (LIPMM) has proven a number of advantages in micro-machining due to reduced thermal defects, smaller heat-affected zones, and larger aspect ratios when compared with conventional laser ablation. The present work explores the use of external magnetic fields to further enhance process outcomes in LIPMM. Specifically, machining characteristics and outcomes including plasma intensity, attainable aspect ratios, and surface quality will be explored through a theoretical and experimental study in different classes of materials in a transverse magnetic field controlled LIPMM. First, process improvement mechanisms are illustrated in terms of plasma confinement and laser absorption in transverse magnetic fields. A magnetic field redistribution analysis is performed to reveal the differences in the achievable enhancements in machining characteristics in terms of material characteristics. Second, a set of single-factor experiments is conducted to investigate the effects of the strength and direction of the magnetic field on machining capabilities in magnetic and nonmagnetic materials (410, 304 stainless steels and silicon). The experimental results show that plasma intensity and aspect ratios can be significantly increased in the presence of transverse magnetic fields. The greatest influence on machining capability is achieved in a magnetic material. In this case, plasma intensity and aspect ratios were increased by about 176% and 160%, respectively, when compared with other materials with a magnetic field strength of 0.1 T and a magnetic field direction parallel to the processing direction. Finally, the morphology and cross-section profiles of micro-channels have been measured for verifying the impact on the surface quality of transverse magnetically controlled LIPMM.

References

1.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Feasibility of Laser Induced Plasma Micro-Machining (LIP-MM)
,”
International Precision Assembly Seminar
,
Chamonix, France
,
February
.
2.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann.
,
62
(
1
), pp.
211
214
. 10.1016/j.cirp.2013.03.036
3.
Harilal
,
S. S.
,
Tillack
,
M. S.
,
O’shay
,
B.
,
Bindhu
,
C. V.
, and
Najmabadi
,
F.
,
2004
, “
Confinement and Dynamics of Laser-Produced Plasma Expanding Across a Transverse Magnetic Field
,”
Phys. Rev. E
,
69
(
2
), p.
026413
. 10.1103/PhysRevE.69.026413
4.
Zhang
,
Y. M.
,
Zhang
,
Z.
,
Zhang
,
G. J.
, and
Li
,
W. Y.
,
2019
, “
Reduction of Energy Consumption and Thermal Deformation in WEDM by Magnetic Field Assisted Technology
,”
Int. J. Precis. Eng. Manuf-Green
,
7
(
2
), pp.
1
14
. 10.1007/s40684-019-00086-5
5.
Chang
,
Y. J.
,
Kuo
,
C. L.
, and
Wang
,
N. Y.
,
2012
, “
Magnetic Assisted Laser Micromachining for Highly Reflective Metals
,”
J. Laser Micro/Nanoeng.
,
7
(
3
), pp.
254
259
. 10.2961/jlmn.2012.03.0004
6.
Rai
,
V. N.
,
Rai
,
A. K.
,
Yueh
,
F.-Y.
, and
Singh
,
J. P.
,
2003
, “
Optical Emission From Laser-Induced Breakdown Plasma of Solid and Liquid Samples in the Presence of a Magnetic Field
,”
Appl. Opt.
,
42
(
12
), pp.
2085
2093
. 10.1364/AO.42.002085
7.
Wolff
,
S.
, and
Saxena
,
I.
,
2014
, “
A Preliminary Study on the Effect of External Magnetic Fields on Laser-Induced Plasma Micromachining (LIPMM)
,”
Manuf. Lett.
,
2
(
2
), pp.
54
59
. 10.1016/j.mfglet.2014.02.003
8.
Tang
,
H. W.
,
Qiu
,
P.
,
Cao
,
R. X.
,
Zhuang
,
J. L.
, and
Xu
,
S. L.
,
2019
, “
Repulsive Magnetic Field–Assisted Laser-Induced Plasma Micromachining for High-Quality Microfabrication
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2223
2229
. 10.1007/s00170-019-03370-5
9.
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High Throughput Microfabrication Using Laser Induced Plasma in Saline Aqueous Medium
,”
J. Mater. Process. Technol.
,
217
, pp.
77
87
. 10.1016/j.jmatprotec.2014.10.018
10.
Ishan
,
S.
, and
Ehmann
,
K. F.
,
2014
, “
Multimaterial Capability of Laser Induced Plasma Micromachining
,”
J. Micro Nano-Manuf.
,
2
(
3
), p.
031005
. 10.1115/1.4027811
11.
Kennedy
,
P. K.
,
1995
, “
A First-Order Model for Computation of Laser-Induced Breakdown Thresholds in Ocular and Aqueous Media. I. Theory
,”
IEEE J. Quantum Electron.
,
31
(
2
), pp.
2241
2249
. 10.1109/3.477753
12.
Noack
,
J.
, and
Vogel
,
A.
,
1999
, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
,
35
(
8
), pp.
1156
1167
. 10.1109/3.777215
13.
Fedorov
,
M. V.
,
1997
,
Atomic and Free Electrons in a Strong Light Field
,
World Scientific
,
Singapore
.
14.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1975
, “Classical Field Theory,” Course of Theoretical Physics, 2.
15.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1997
,
Quantum Mechanics
,
Pergamon Press
,
London
.
16.
Goldston
,
R. J.
, and
Rutherford
,
P. H.
,
1995
,
Introduction to Plasma Physics
,
CRC Press
.
17.
Mao
,
S. S.
,
Mao
,
X.
,
Greif
,
R.
, and
Russo
,
R. E.
,
2000
, “
Dynamics of an Air Breakdown Plasma on a Solid Surface During Picosecond Laser Ablation
,”
Appl. Phys. Lett.
,
76
(
1
), pp.
31
33
. 10.1063/1.125646
18.
Rieger
,
G. W.
,
Taschuk
,
M.
,
Tsui
,
Y. Y.
, and
Fedosejevs
,
R.
,
2003
, “
Comparative Study of Laser-Induced Plasma Emission From Microjoule Picosecond and Nanosecond KrF-Laser Pulses
,”
Spectrochim. Acta B
,
58
(
3
), pp.
497
510
. 10.1016/S0584-8547(03)00014-4
19.
Pandey
,
P. K.
, and
Thareja
,
R. K.
,
2010
, “
Plume Dynamics of Laser Produced air Plasma
,”
J. Phys. Conf. Ser.
,
208
(
1
), p.
012091
. 10.1088/1742-6596/208/1/012091
20.
Chen
,
Z.
,
Zhang
,
Y.
,
Zhang
,
G.
,
Huang
,
Y.
, and
Liu
,
C.
,
2017
, “
Theoretical and Experimental Study of Magnetic-Assisted Finish Cutting Ferromagnetic Material in WEDM
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
36
47
. 10.1016/j.ijmachtools.2017.07.009
21.
Charee
,
W.
, and
Tangwarodomnukun
,
V.
,
2018
, “
Dynamic Features of Bubble Induced by a Nanosecond Pulse Laser in Still and Flowing Water
,”
Opt. Laser Technol.
,
100
, pp.
230
243
. 10.1016/j.optlastec.2017.10.019
22.
Wang
,
X. S.
,
Huang
,
Y. J.
,
Xu
,
B.
,
Xing
,
Y. Q.
, and
Kang
,
M.
,
2019
, “
Comparative Assessment of Picosecond Laser Induced Plasma Micromachining Using Still and Flowing Water
,”
Opt. Laser Technol.
,
119
, p.
105623
. 10.1016/j.optlastec.2019.105623
23.
Pallav
,
K.
,
Ishan
,
S.
, and
Ehmann
,
K. F.
,
2014
, “
Comparative Assessment of the Laser-Induced Plasma Micromachining and the Ultrashort Pulsed Laser Ablation Processes
,”
J. Micro Nano-Manuf.
,
2
(
3
), p.
031001
. 10.1115/1.4027738
24.
Tillack
,
M. S.
,
Blair
,
D. W.
, and
Harilal
,
S. S.
,
2004
, “
The Effect of Ionization on Cluster Formation in Laser Ablation Plumes
,”
Nanotechnology
,
15
(
3
), pp.
390
403
. 10.1088/0957-4484/15/3/028
25.
Ming
,
W.
,
Jia
,
H.
,
Zhang
,
H.
,
Zhang
,
Z.
,
Liu
,
K.
,
Du
,
J.
,
Shen
,
F.
, and
Zhang
,
G.
,
2020
, “
A Comprehensive Review of Electric Discharge Machining of Advanced Ceramics
,”
Ceram. Int.
,
69
(
14
), pp.
21813
21838
. 10.1016/j.ceramint.2020.05.207
26.
Moffatt
,
H. K.
,
1978
,
Field Generation in Electrically Conducting Fluids
,
Cambridge University Press
,
Cambridge, London, New York, Melbourne
.
27.
Wang
,
X. S.
,
Ma
,
C. B.
,
Li
,
C. Y.
,
Kang
,
M.
, and
Ehmann
,
F.
,
2018
, “
Influence of Pulse Energy on Machining Characteristics in Laser Induced Plasma Micro-Machining
,”
J. Mater. Process. Technol.
,
262
, pp.
85
94
. 10.1016/j.jmatprotec.2018.06.031
28.
Zhang
,
Z.
,
Ming
,
W.
,
Zhang
,
Y.
,
Yin
,
L.
,
Xue
,
T.
,
Yu
,
H.
,
Chen
,
Z.
,
Liao
,
D.
, and
Zhang
,
G.
,
2020
, “
Analyzing Sustainable Performance on High-Precision Molding Process of 3D Ultra-Thin Glass for Smart Phone
,”
J. Cleaner Prod.
,
255
, p.
120196
. 10.1016/j.jclepro.2020.120196
29.
Farrokhi
,
H.
,
Gruzdev
,
V.
,
Zheng
,
H. Y.
, and
Zhou
,
W.
,
2019
, “
Fundamental Mechanisms of Nanosecond-Laser-Ablation Enhancement by an Axial Magnetic Field
,”
J. Opt. Soc. Am. B
,
36
(
4
), pp.
1091
1100
. 10.1364/JOSAB.36.001091
30.
Farrokhi
,
H.
,
Gruzdev
,
V.
,
Zheng
,
Y. H.
,
Rawat
,
R. S.
, and
Zhou
,
W.
,
2016
, “
Magneto-absorption Effects in Magnetic-Field Assisted Laser Ablation of Silicon by UV Nanosecond Pulses
,”
Appl. Phys. Lett.
,
108
(
25
), p.
254103
. 10.1063/1.4954708
You do not currently have access to this content.