Abstract

The crack closure phenomenon is important to study as it estimates the fatigue life of the components. It becomes even more complex under low-cycle fatigue (LCF) since under LCF high amount of plasticity is induced within the material near notches or defects. As a result, the assumptions used by the linear elastic fracture mechanics (LEFM) approach become invalid. However, several experimental techniques are reported on the topic, the utilization of numerical tools can provide substantial cost and time-saving. In this study, the authors present a finite element simulation technique to evaluate the opening stress levels for two structural steels (25CrMo4 and 30NiCrMoV12) under low-cycle fatigue conditions. The LCF experimental results were used to obtain kinematic hardening parameters through the Chaboche model. The finite element analysis (FEA) model was designed and validated, following the fatigue crack propagation simulation under high plasticity conditions using abaqus. Crack opening displacement versus stress data were exported from abaqus, and 1.5% offset method was employed to define opening stress levels. Numerical simulation results were compared with the experimental results obtained earlier through the digital image correlation (DIC) technique. To conclude, FEA could be a valuable tool to predict crack closure phenomena and, ultimately, the fatigue life of components. However, analysis of opening stresses using crystal plasticity models or extended finite element method (XFEM) tools should be explored for a better approximation in future studies.

References

1.
Makino
,
T.
,
Sakai
,
H.
,
Kozuka
,
C.
,
Yamazaki
,
Y.
,
Yamamoto
,
M.
, and
Minoshima
,
K.
,
2020
, “
Overview of Fatigue Damage Evaluation Rule for Railway Axles in Japan and Fatigue Property of Railway Axle Made of Medium Carbon Steel
,”
Int. J. Fatigue
,
132
(
3
), p.
105361
.
2.
da Costa
,
P. R.
,
Soares
,
H.
,
Reis
,
L.
, and
Freitas
,
M.
,
2020
, “
Ultrasonic Fatigue Testing Under Multiaxial Loading on a Railway Steel
,”
Int. J. Fatigue
,
136
(
7
), p.
105581
.
3.
Soares
,
H.
,
Costa
,
P.
,
Freitas
,
M.
,
Reis
,
L.
, and
Hénaff
,
G.
,
2018
, “
Fatigue Life Assessment of a Railway Wheel Material Under HCF and VHCF Conditions
,”
MATEC Web Conf.
,
165
(
1
), p.
9003
.
4.
Wu
,
S. C.
,
Liu
,
Y. X.
,
Li
,
C. H.
,
Kang
,
G. Z.
, and
Liang
,
S. L.
,
2018
, “
On the Fatigue Performance and Residual Life of Intercity Railway Axles with Inside Axle Boxes
,”
Eng. Fract. Mech.
,
197
(
11
), pp.
176
191
.
5.
Liao
,
Z.
,
Yang
,
B.
,
Qin
,
Y.
,
Xiao
,
S.
,
Yang
,
G.
,
Zhu
,
T.
, and
Gao
,
N.
,
2020
, “
Short Fatigue Crack Behaviour of LZ50 Railway Axle Steel Under Multi-Axial Loading in low-Cycle Fatigue
,”
Int. J. Fatigue
,
132
(
3
), p.
105366
.
6.
Adamczyk-Cieślak
,
B.
,
Koralnik
,
M.
,
Kuziak
,
R.
,
Brynk
,
T.
,
Zygmunt
,
T.
, and
Mizera
,
J.
,
2019
, “
Low-cycle Fatigue Behaviour and Microstructural Evolution of Pearlitic and Bainitic Steels
,”
Mater. Sci. Eng., A
,
747
(
8
), pp.
144
153
.
7.
Zhang
,
J.
,
Li
,
H.
,
Yang
,
B.
,
Wu
,
B.
, and
Zhu
,
S.
,
2020
, “
Fatigue Properties and Fatigue Strength Evaluation of Railway Axle Steel: Effect of Micro-Shot Peening and Artificial Defect
,”
Int. J. Fatigue
,
132
(
3
), p.
105379
.
8.
Leander
,
J.
,
Andersson
,
A.
, and
Karoumi
,
R.
,
2010
, “
Monitoring and Enhanced Fatigue Evaluation of a Steel Railway Bridge
,”
Eng. Struct.
,
32
(
3
), pp.
854
863
.
9.
Benedetti
,
M.
,
Fontanari
,
V.
,
Santus
,
C.
, and
Bandini
,
M.
,
2010
, “
Notch Fatigue Behaviour of Shot Peened High-Strength Aluminium Alloys: Experiments and Predictions Using a Critical Distance Method
,”
Int. J. Fatigue
,
32
(
10
), pp.
1600
1611
.
10.
Yang
,
Y. S.
,
Son
,
K. J.
,
Cho
,
S. K.
,
Hong
,
S. G.
,
Kim
,
S. K.
, and
Mo
,
K. H.
,
2001
, “
Effect of Residual Stress on Fatigue Strength of Resistance Spot Weldment
,”
Sci. Technol. Weld. Join.
,
6
(
6
), pp.
397
401
.
11.
Shen
,
H.
,
Jiang
,
J.
,
Feng
,
D.
,
Xing
,
C.
,
Zhao
,
X.
, and
Xiao
,
P.
,
2019
, “
Environmental Effect on the Crack Behavior of Yttria-Stabilized Zirconia During Laser Drilling
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
054501
.
12.
Chen
,
S.
,
Gu
,
R.
,
Liu
,
Q.
,
Wang
,
W.
, and
Wei
,
X.
,
2020
, “
Experimental and Numerical Investigation on Strengthening Behavior of 7075 Aluminum Alloy Sheets in Hot Forming–Quenching Integrated Process
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061005
.
13.
Camas
,
D.
,
Garcia-Manrique
,
J.
,
Perez-Garcia
,
F.
, and
Gonzalez-Herrera
,
A.
,
2020
, “
Numerical Modelling of Three-Dimensional Fatigue Crack Closure: Plastic Wake Simulation
,”
Int. J. Fatigue
,
131
, p.
105344
.
14.
Ito
,
H.
,
Suzuki
,
Y.
,
Nishikawa
,
H.
,
Kinefuchi
,
M.
,
Enoki
,
M.
, and
Shibanuma
,
K.
,
2020
, “
Multiscale Model Prediction of Ferritic Steel Fatigue Strength Based on Microstructural Information, Tensile Properties, and Loading Conditions (no Adjustable Material Constants)
,”
Int. J. Mech. Sci.
,
170
, p.
105339
.
15.
Khalid
,
M. Y.
,
Nasir
,
M. A.
,
Ali
,
A.
,
Al Rashid
,
A.
, and
Khan
,
M. R.
,
2020
, “
Experimental and Numerical Characterization of Tensile Property of Jute/ Carbon Fabric Reinforced Epoxy Hybrid Composites[6]
,”
SN Appl. Sci.
,
2
(
4
).
16.
Marques
,
B.
,
Borrego
,
L. P.
,
Ferreira
,
J. M.
,
Antunes
,
F. V.
, and
Branco
,
R.
,
2019
, “
A Numerical Analysis of Fatigue Crack Closure Using CTOD
,”
Procedia Struct. Integr.
,
18
(
1
), pp.
645
650
.
17.
Jiang
,
W.
,
Li
,
Y.
,
Fang
,
G.
, and
Guo
,
F.
,
2020
, “
Effect of Laser Parameters on Microstructure and Fracture Properties of Repaired Cracks with Micro/Nano Material Addition
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
054501
.
18.
Khalid
,
M. Y.
,
Rashid
,
A. A.
, and
Sheikh
,
M. F.
,
2021
, “
Effect of Anodizing Process on Inter Laminar Shear Strength of GLARE Composite Through T-Peel Test: Experimental and Numerical Approach
,”
Exp. Tech.
,
45
(
2
), pp.
227
235
.
19.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
.
20.
Khalid
,
M. Y.
,
Arif
,
Z. U.
,
Sheikh
,
M. F.
, and
Nasir
,
M. A.
,
2021
, “
Mechanical Characterization of Glass and Jute Fiber-Based Hybrid Composites Fabricated Through Compression Molding Technique
,”
Int. J. Mater. Form.
,
14
(
4
).
21.
Nikam
,
S. H.
, and
Jain
,
N. K.
,
Apr. 2019
, “
Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061003
.
22.
Shen
,
J.
,
Xu
,
P.
, and
Yu
,
Y.
,
2020
, “
Dynamic Characteristics Analysis and Finite Element Simulation of Steel–BFPC Machine Tool Joint Surface
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011006
.
23.
Nie
,
G. C.
,
Zhang
,
K.
,
Outeiro
,
J.
,
Caruso
,
S.
,
Umbrello
,
D.
,
Ding
,
H.
, and
Zhang
,
X. M.
,
2020
, “
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of AISI 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
034501
.
24.
Newman
,
J. C.
,
1976
, “A Finite-Element Analysis of Fatigue Crack Closure,”
Mechanics of Crack Growth
,
J. R.
Rice
, and
P. C.
Paris
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
281
301
.
25.
Pommier
,
S.
, and
Bompard
,
P.
,
2000
, “
Bauschinger Effect of Alloys and Plasticity-Induced Crack Closure: a Finite Element Analysis
,”
Fatigue Fract. Eng. Mater. Struct.
,
23
(
2
), pp.
129
139
.
26.
Alshammrei
,
S.
,
Lin
,
B.
, and
Tong
,
J.
,
2020
, “
Full-field Experimental and Numerical Characterisation of a Growing Fatigue Crack in a Stainless Steel
,”
Int. J. Fatigue
,
133
(
August 2019
), p.
105449
.
27.
Materna
,
A.
,
Lauschmann
,
H.
, and
Ondráček
,
J.
,
2019
, “
Numerical Modelling of Plasticity Induced Crack Closure with Rough Fracture Surfaces
,”
Key Eng. Mater.
,
827
(
35
), pp.
7
12
. www.scientific.net/kem.827.7
28.
Song
,
Y.
,
Yang
,
P.
,
Peng
,
Z.
, and
Jiang
,
W.
,
2019
, “
Low-Cycle Fatigue Crack Propagation Behavior of Cracked Steel Plates Considering Accumulative Plastic Strain
,”
Int. J. Steel Struct.
,
20
(
2
), pp.
538
547
.
29.
Alizadeh
,
H.
,
Hills
,
D. A.
,
De Matos
,
P. F. P.
,
Nowell
,
D.
,
Pavier
,
M. J.
,
Paynter
,
R. J.
,
Smith
,
D. J.
, and
Simandjuntak
,
S.
,
2007
, “
A Comparison of two and Three-Dimensional Analyses of Fatigue Crack Closure
,”
Int. J. Fatigue
,
29
(
2
), pp.
222
231
.
30.
Dong
,
Q.
,
Yang
,
P.
,
Xu
,
G.
, and
Deng
,
J.
,
2016
, “
Mechanisms and Modeling of low Cycle Fatigue Crack Propagation in a Pressure Vessel Steel Q345
,”
Int. J. Fatigue
,
89
(
8
), pp.
2
10
.
31.
Antunes
,
F. V.
,
Rodrigues
,
S. M.
,
Branco
,
R.
, and
Camas
,
D.
,
2016
, “
A Numerical Analysis of CTOD in Constant Amplitude Fatigue Crack Growth
,”
Theor. Appl. Fract. Mech.
,
85
(
5
), pp.
45
55
.
32.
Azeez
,
A.
,
Eriksson
,
R.
,
Leidermark
,
D.
, and
Calmunger
,
M.
,
2020
, “
Low Cycle Fatigue Life Modelling Using Finite Element Strain Range Partitioning for a Steam Turbine Rotor Steel
,”
Theor. Appl. Fract. Mech.
,
107
(
3
), p.
102510
.
33.
Zhang
,
L.
,
Zhao
,
L.
,
Jiang
,
R.
, and
Bullough
,
C.
,
2020
, “
Crystal Plasticity Finite-Element Modelling of Cyclic Deformation and Crack Initiation in a Nickel-Based Single-Crystal Superalloy Under low-Cycle Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
8
), pp.
1769
1783
.
34.
Narendra
,
P. V. R.
, and
Singh
,
K. D.
,
2017
, “
Elliptical Hollow Section Steel Cantilever Beams Under Extremely low Cycle Fatigue Flexural Load—A Finite Element Study
,”
Thin-Walled Struct.
,
119
(
10
), pp.
126
150
.
35.
Kopas
,
P.
,
Saga
,
M.
,
Baniari
,
V.
,
Vasko
,
M.
, and
Handrik
,
M.
,
2017
, “
A Plastic Strain and Stress Analysis of Bending and Torsion Fatigue Specimens in the low-Cycle Fatigue Region Using the Finite Element Methods
,”
Procedia Eng.
,
177
, pp.
526
531
.
36.
Al Rashid
,
A.
,
Imran
,
R.
, and
Khalid
,
M. Y.
,
2020
, “
Determination of Opening Stresses for Railway Steel Under low Cycle Fatigue Using Digital Image Correlation
,”
Theor. Appl. Fract. Mech.
,
108
(
April
), p.
102601
.
37.
Standard
,
A.
,
2004
, “
“E606-92,” Stand. Pract. Strain-Controlled Fatigue Testing
,”
Annu. B. ASTM Stand.
,
3
.
You do not currently have access to this content.