Abstract

This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions.

References

1.
Trotta
,
G.
,
Stampone
,
B.
,
Fassi
,
I.
, and
Tricarico
,
L.
,
2021
, “
Study of Rheological Behaviour of Polymer Melt in Micro Injection Moulding With a Miniaturized Parallel Plate Rheometer
,”
Polym. Test.
,
96
, p.
107068
.
2.
Azizipour
,
N.
,
Avazpour
,
R.
,
Rosenzweig
,
D. H.
,
Sawan
,
M.
, and
Ajji
,
A.
,
2020
, “
Evolution of Biochip Technology: A Review From Lab-on-a-Chip to Organ-on-a-Chip
,”
Micromachines
,
11
(
6
), p.
599
.
3.
Wang
,
X.
,
Yu
,
H.
,
Li
,
P.
,
Zhang
,
Y.
,
Wen
,
Y.
,
Qiu
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
, and
Liu
,
L.
,
2021
, “
Femtosecond Laser-Based Processing Methods and Their Applications in Optical Device Manufacturing: A Review
,”
Opt. Laser Technol.
,
135
, p.
106687
.
4.
Lee
,
K. S.
,
Kim
,
R. H.
,
Yang
,
D. Y.
, and
Park
,
S. H.
,
2008
, “
Advances in 3D Nano/Microfabrication Using Two-Photon Initiated Polymerization
,”
Prog. Polym. Sci.
,
33
(
6
), pp.
631
681
.
5.
Xia
,
Y.
,
Rogers
,
J. A.
,
Paul
,
K. E.
, and
Whitesides
,
G. M.
,
1999
, “
Unconventional Methods for Fabricating and Patterning Nanostructures
,”
Chem. Rev.
,
99
(
7
), pp.
1823
1848
.
6.
Madden
,
J. D.
, and
Hunter
,
I. W.
,
1996
, “
Three-Dimensional Microfabrication by Localized Electrochemical Deposition
,”
J. Microelectromech. Syst.
,
5
(
1
), pp.
24
32
.
7.
Malinauskas
,
A.
,
2001
, “
Chemical Deposition of Conducting Polymers
,”
Polymer
,
42
(
9
), pp.
3957
3972
.
8.
Ikariyama
,
Y.
,
Yamauchi
,
S.
,
Yukiashi
,
T.
, and
Ushioda
,
H.
,
1987
, “
Micro-enzyme Electrode Prepared on Platinized Platinum
,”
Anal. Lett.
,
20
(
9
), pp.
1407
1416
.
9.
Chen
,
F.
,
Zhang
,
D.
,
Yang
,
Q.
,
Yong
,
J.
,
Du
,
G.
,
Si
,
J.
,
Yun
,
F.
, and
Hou
,
X.
,
2013
, “
Bioinspired Wetting Surface via Laser Microfabrication
,”
ACS Appl. Mater. Interfaces
,
5
(
15
), pp.
6777
6792
.
10.
Hatakeyama
,
M.
,
Ichiki
,
K.
,
Satake
,
T.
,
Hatamura
,
Y.
,
Nakao
,
M.
, and
Ebara Corp
,
2003
, “Microfabrication of pattern imprinting,” U.S. Patent 6,671,034.
11.
Pao
,
Y. H.
, and
Rentzepis
,
P. M.
,
1965
, “
Laser-Induced Production of Free Radicals in Organic Compounds
,”
Appl. Phys. Lett.
,
6
(
5
), pp.
93
95
.
12.
Lei
,
S.
,
Zhao
,
X.
,
Yu
,
X.
,
Hu
,
A.
,
Vukelic
,
S.
,
Jun
,
M. B. G.
,
Joe
,
H.
,
Yao
,
Y. L.
, and
Shin
,
Y. C.
,
2020
, “
Ultrafast Laser Applications in Manufacturing Processes: A State-of-the-Art Review
,”
ASME. J. Manuf. Sci. Eng.
,
142
(
3
), p.
031005
.
13.
Ushiba
,
S.
,
Shoji
,
S.
,
Masui
,
K.
,
Kuray
,
P.
,
Kono
,
J.
, and
Kawata
,
S.
,
2013
, “
3D Microfabrication of Single-Wall Carbon Nanotube/Polymer Composites by Two-Photon Polymerization Lithography
,”
Carbon
,
59
, pp.
283
288
.
14.
Lichade
,
K.
,
Jiang
,
Y.
, and
Pan
,
Y.
,
2021
, “
Hierarchical Nano/Micro-structured Surfaces With High Surface Area/Volume Ratios
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), pp.
1
36
.
15.
Ledermann
,
A.
,
Cademartiri
,
L.
,
Hermatschweiler
,
M.
,
Toninelli
,
C.
,
Ozin
,
G. A.
,
Wiersma
,
D. S.
,
Wegener
,
M.
, and
Von Freymann
,
G.
,
2006
, “
Three-Dimensional Silicon Inverse Photonic Quasicrystals for Infrared Wavelengths
,”
Nat. Mater.
,
5
(
12
), pp.
942
945
.
16.
Rill
,
M. S.
,
Plet
,
C.
,
Thiel
,
M.
,
Staude
,
I.
,
Von Freymann
,
G.
,
Linden
,
S.
, and
Wegener
,
M.
,
2008
, “
Photonic Metamaterials by Direct Laser Writing and Silver Chemical Vapour Deposition
,”
Nat. Mater.
,
7
(
7
), pp.
543
546
.
17.
Maruo
,
S.
,
Ikuta
,
K.
, and
Korogi
,
H.
,
2003
, “
Submicron Manipulation Tools Driven by Light in a Liquid
,”
Appl. Phys. Lett.
,
82
(
1
), pp.
133
135
.
18.
Tayalia
,
P.
,
Mendonca
,
C. R.
,
Baldacchini
,
T.
,
Mooney
,
D. J.
, and
Mazur
,
E.
,
2008
, “
3D Cell-Migration Studies Using Two-Photon Engineered Polymer Scaffolds
,”
Adv. Mater.
,
20
(
23
), pp.
4494
4498
.
19.
Song
,
J.
,
Michas
,
C.
,
Chen
,
C. S.
,
White
,
A. E.
, and
Grinstaff
,
M. W.
,
2020
, “
From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization
,”
Adv. Healthcare Mater.
,
9
(
1
), p.
1901217
.
20.
Cumpston
,
B. H.
,
Ananthavel
,
S. P.
,
Barlow
,
S.
,
Dyer
,
D. L.
,
Ehrlich
,
J. E.
,
Erskine
,
L. L.
,
Heikal
,
A. A.
,
Kuebler
,
S. M.
,
Lee
,
I. Y. S.
,
McCord-Maughon
,
D.
, and
Qin
,
J.
,
1999
, “
Two-Photon Polymerization Initiators for Three-Dimensional Optical Data Storage and Microfabrication
,”
Nature
,
398
(
6722
), pp.
51
54
.
21.
Gissibl
,
T.
,
Wagner
,
S.
,
Sykora
,
J.
,
Schmid
,
M.
, and
Giessen
,
H.
,
2017
, “
Refractive Index Measurements of Photo-Resists for Three-Dimensional Direct Laser Writing
,”
Opt. Mater. Express
,
7
(
7
), pp.
2293
2298
.
22.
Ostendorf
,
A.
, and
Chichkov
,
B. N.
,
2006
, “
Two-Photon Polymerization: a New Approach to Micromachining
,”
Photonics spectra
,
40
(
10
), p.
72
.
23.
Chueh
,
Y.
,
Zhang
,
X.
,
Wei
,
C.
,
Sun
,
Z.
, and
Li
,
L.
,
2020
, “
Additive Manufacturing of Polymer-Metal/Ceramic Functionally Graded Composite Components via Multiple Material Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
051003
.
24.
Le
,
B.
,
Khaliq
,
J.
,
Huo
,
D.
,
Teng
,
X.
, and
Shyha
,
I.
,
2020
, “
A Review on Nanocomposites. Part 1: Mechanical Properties
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
100801
.
25.
Gong
,
S.
,
Cui
,
W.
,
Zhang
,
Q.
,
Cao
,
A.
,
Jiang
,
L.
, and
Cheng
,
Q.
,
2015
, “
Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes
,”
ACS Nano
,
9
(
12
), pp.
11568
11573
.
26.
Ishitobi
,
H.
,
Shoji
,
S.
,
Hiramatsu
,
T.
,
Sun
,
H. B.
,
Sekkat
,
Z.
, and
Kawata
,
S.
,
2008
, “
Two-Photon Induced Polymer Nanomovement
,”
Optics Express
,
16
(
18
), pp.
14106
14114
.
27.
Sun
,
Z. B.
,
Dong
,
X. Z.
,
Chen
,
W. Q.
,
Nakanishi
,
S.
,
Duan
,
X. M.
, and
Kawata
,
S.
,
2008
, “
Multicolor Polymer Nanocomposites: In situ Synthesis and Fabrication of 3D Microstructures
,”
Adv. Mater.
,
20
(
5
), pp.
914
919
.
28.
Kaneko
,
K.
,
Sun
,
H. B.
,
Duan
,
X. M.
, and
Kawata
,
S.
,
2003
, “
Two-Photon Photoreduction of Metallic Nanoparticle Gratings in a Polymer Matrix
,”
Appl. Phys. Lett.
,
83
(
7
), pp.
1426
1428
.
29.
Xia
,
H.
,
Wang
,
J.
,
Tian
,
Y.
,
Chen
,
Q. D.
,
Du
,
X. B.
,
Zhang
,
Y. L.
,
He
,
Y.
, and
Sun
,
H. B.
,
2010
, “
Ferrofluids for Fabrication of Remotely Controllable Micro-nanomachines by Two-Photon Polymerization
,”
Adv. Mater.
,
22
(
29
), pp.
3204
3207
.
30.
Liu
,
Y.
,
Xiong
,
W.
,
Jiang
,
L. J.
,
Zhou
,
Y. S.
, and
Lu
,
Y. F.
,
2016
, “
Precise 3D Printing of Micro/Nanostructures Using Highly Conductive Carbon Nanotube-Thiol-Acrylate Composites
,”
Laser 3D Manufacturing III
,
San Francisco, CA
,
Apr. 6
.
31.
Ovsianikov
,
A.
,
Viertl
,
J.
,
Chichkov
,
B.
,
Oubaha
,
M.
,
MacCraith
,
B.
,
Sakellari
,
I.
,
Giakoumaki
,
A.
,
Gray
,
D.
,
Vamvakaki
,
M.
,
Farsari
,
M.
, and
Fotakis
,
C.
,
2008
, “
Ultra-low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication
,”
ACS Nano
,
2
(
11
), pp.
2257
2262
.
32.
Roy
,
M.
,
Tran
,
P.
,
Dickens
,
T.
, and
Schrand
,
A.
,
2020
, “
Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers
,”
J. Compos. Sci.
,
4
(
1
), p.
1
.
33.
Joyee
,
E. B.
,
Lu
,
L.
, and
Pan
,
Y.
,
2019
, “
Analysis of Mechanical Behavior of 3D Printed Heterogeneous Particle-Polymer Composites
,”
Composites, Part B
,
173
, p.
106840
.
34.
Niendorf
,
K.
, and
Raeymaekers
,
B.
,
2021
, “
Additive Manufacturing of Polymer Matrix Composite Materials With Aligned or Organized Filler Material: A Review
,”
Adv. Eng. Mater.
, p.
2001002
.
35.
Vekselman
,
V.
,
Sande
,
L.
, and
Kornev
,
K. G.
,
2015
, “
Fully Magnetic Printing by Generation of Magnetic Droplets on Demand With a Coilgun
,”
J. Appl. Phys.
,
118
(
22
), p.
224902
.
36.
Martin
,
J. J.
,
Fiore
,
B. E.
, and
Erb
,
R. M.
,
2015
, “
Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing
,”
Nat. Commun.
,
6
(
1
), pp.
1
7
.
37.
Lu
,
L.
,
Guo
,
P.
, and
Pan
,
Y.
,
2017
, “
Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071008
.
38.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
39.
Holmes
,
L. R.
, and
Riddick
,
J. C.
,
2014
, “
Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites With Tailored Internal Structure
,”
Jom
,
66
(
2
), pp.
270
274
.
40.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), p.
1605750
.
41.
Lee
,
C.
, and
Tarbutton
,
J. A.
,
2014
, “
Electric Poling-Assisted Additive Manufacturing Process for PVDF Polymer-Based Piezoelectric Device Applications
,”
Smart Mater. Struct.
,
23
(
9
), p.
095044
.
42.
Kim
,
G. H.
,
Shkel
,
Y. M.
, and
Rowlands
,
R. E.
,
2003
, “
Field-Aided Microtailoring of Polymeric Nanocomposites
,”
Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices
,
San Diego, CA
,
July 28
.
43.
Yunus
,
D. E.
,
Sohrabi
,
S.
,
He
,
R.
,
Shi
,
W.
, and
Liu
,
Y.
,
2017
, “
Acoustic Patterning for 3D Embedded Electrically Conductive Wire in Stereolithography
,”
J. Micromech. Microeng.
,
27
(
4
), p.
045016
.
44.
Collino
,
R. R.
,
Ray
,
T. R.
,
Fleming
,
R. C.
,
Cornell
,
J. D.
,
Compton
,
B. G.
, and
Begley
,
M. R.
,
2016
, “
Deposition of Ordered Two-Phase Materials Using Microfluidic Print Nozzles With Acoustic Focusing
,”
Extreme Mech. Lett.
,
8
, pp.
96
106
.
45.
Hahnlen
,
R.
, and
Dapino
,
M. J.
,
2014
, “
NiTi–Al Interface Strength in Ultrasonic Additive Manufacturing Composites
,”
Composites, Part B
,
59
, pp.
101
108
.
46.
Lu
,
L.
,
Tang
,
X.
,
Hu
,
S.
, and
Pan
,
Y.
,
2018
, “
Acoustic Field-Assisted Particle Patterning for Smart Polymer Composite Fabrication in Stereolithography
,”
3D Print. Addit. Manuf.
,
5
(
2
), pp.
151
159
.
47.
Asif
,
S.
,
Chansoria
,
P.
, and
Shirwaiker
,
R.
,
2020
, “
Ultrasound-Assisted vat Photopolymerization 3D Printing of Preferentially Organized Carbon Fiber Reinforced Polymer Composites
,”
J. Manuf. Process.
,
56
, pp.
1340
1343
.
48.
Coakley
,
W. T.
,
Bardsley
,
D. W.
,
Grundy
,
M. A.
,
Zamani
,
F.
, and
Clarke
,
D. J.
,
1989
, “
Cell Manipulation in Ultrasonic Standing Wave Fields
,”
J. Chem. Technol. Biotechnol.
,
44
(
1
), pp.
43
62
.
49.
Petersson
,
F.
,
Åberg
,
L.
,
Swärd-Nilsson
,
A. M.
, and
Laurell
,
T.
,
2007
, “
Free Flow Acoustophoresis: Microfluidic-Based Mode of Particle and Cell Separation
,”
Anal. Chem.
,
79
(
14
), pp.
5117
5123
.
50.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
1706539
.
51.
Masui
,
K.
,
Shoji
,
S.
,
Asaba
,
K.
,
Rodgers
,
T. C.
,
Jin
,
F.
,
Duan
,
X. M.
, and
Kawata
,
S.
,
2011
, “
Laser Fabrication of Au Nanorod Aggregates Microstructures Assisted by Two-Photon Polymerization
,”
Optics Express
,
19
(
23
), pp.
22786
22796
.
52.
Blasco
,
E.
,
Müller
,
J.
,
Müller
,
P.
,
Trouillet
,
V.
,
Schön
,
M.
,
Scherer
,
T.
,
Barner-Kowollik
,
C.
, and
Wegener
,
M.
,
2016
, “
Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing
,”
Adv. Mater.
,
28
(
18
), pp.
3592
3595
.
53.
Liu
,
Y.
,
Hu
,
Q.
,
Zhang
,
F.
,
Tuck
,
C.
,
Irvine
,
D.
,
Hague
,
R.
,
He
,
Y.
,
Simonelli
,
M.
,
Rance
,
G. A.
,
Smith
,
E. F.
, and
Wildman
,
R. D.
,
2016
, “
Additive Manufacture of Three Dimensional Nanocomposite Based Objects Through Multiphoton Fabrication
,”
Polymers
,
8
(
9
), p.
325
.
54.
Hu
,
Q.
,
Sun
,
X. Z.
,
Parmenter
,
C. D.
,
Fay
,
M. W.
,
Smith
,
E. F.
,
Rance
,
G. A.
,
He
,
Y.
,
Zhang
,
F.
,
Liu
,
Y.
,
Irvine
,
D.
, and
Tuck
,
C.
,
2017
, “
Additive Manufacture of Complex 3D Au-Containing Nanocomposites by Simultaneous Two-Photon Polymerisation and Photoreduction
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
.
55.
Jiang
,
L.
,
Xiong
,
W.
,
Zhou
,
Y.
,
Liu
,
Y.
,
Huang
,
X.
,
Li
,
D.
,
Baldacchini
,
T.
,
Jiang
,
L.
, and
Lu
,
Y.
,
2016
, “
Performance Comparison of Acrylic and Thiol-Acrylic Resins in Two-Photon Polymerization
,”
Optics Express
,
24
(
12
), pp.
13687
13701
.
56.
Wolfberger
,
A.
,
Rupp
,
B.
,
Kern
,
W.
,
Griesser
,
T.
, and
Slugovc
,
C.
,
2011
, “
Ring Opening Metathesis Polymerization Derived Polymers as Photoresists: Making Use of Thiol-ene Chemistry
,”
Macromol. Rapid Commun.
,
32
(
6
), pp.
518
522
.
57.
Quick
,
A. S.
,
Fischer
,
J.
,
Richter
,
B.
,
Pauloehrl
,
T.
,
Trouillet
,
V.
,
Wegener
,
M.
, and
Barner-Kowollik
,
C.
,
2013
, “
Preparation of Reactive Three-Dimensional Microstructures via Direct Laser Writing and Thiol-ene Chemistry
,”
Macromol. Rapid Commun.
,
34
(
4
), pp.
335
340
.
58.
Lafleur
,
L. K.
,
Dong
,
J.
, and
Parviz
,
B. A.
,
2005
, “
Using Molecular Monolayers as Self-Assembled Photoresist
,”
The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05
,
Seoul, South Korea
,
June 5–9
.
59.
Wadsworth
,
P.
,
Nelson
,
I.
,
Porter
,
D. L.
,
Raeymaekers
,
B.
, and
Naleway
,
S. E.
,
2020
, “
Manufacturing Bioinspired Flexible Materials Using Ultrasound Directed Self-assembly and 3D Printing
,”
Mater. Des.
,
185
, p.
108243
.
60.
Samarasekera
,
C.
, and
Yeow
,
J. T.
,
2015
, “
Facile Microfluidic Channels for Acoustophoresis on a Budget
,”
Biomed. Microdevices
,
17
(
5
), pp.
1
8
.
61.
Soto
,
F.
,
Wagner
,
G. L.
,
Garcia-Gradilla
,
V.
,
Gillespie
,
K. T.
,
Lakshmipathy
,
D. R.
,
Karshalev
,
E.
,
Angell
,
C.
,
Chen
,
Y.
, and
Wang
,
J.
,
2016
, “
Acoustically Propelled Nanoshells
,”
Nanoscale
,
8
(
41
), pp.
17788
17793
.
You do not currently have access to this content.