Abstract

Biomedical manufacturing, which has seen rapid growth over the past decade, is an emerging research area for the manufacturing community. This growth trajectory is exemplified and coupled with a broadening scope of applications with biomedical manufacturing technology, including advancements in the safety, quality, cost, efficiency, and speed of healthcare service and research. The goal of this topical review is to offer a comprehensive survey of the current state-of-the-art in biomedical manufacturing and to summarize existing opportunities and challenges as a basis to guide future research activities in this emerging area. This article categorizes the key manufacturing process types that are currently being leveraged for the biomedical field of use, including machining, joining, additive manufacturing, and micro-/multi-scale manufacturing. For each of these manufacturing processes, notable applications are cited and discussed to provide insights and perspectives into how manufacturing processes can play an integral role in creating new and more sophisticated healthcare services and products.

References

1.
Sun
,
W.
,
Starly
,
B.
,
Daly
,
A. C.
,
Burdick
,
J. A.
,
Groll
,
J.
,
Skeldon
,
G.
,
Shu
,
W.
,
Sakai
,
Y.
,
Shinohara
,
M.
,
Nishikawa
,
M.
,
Jang
,
J.
,
Cho
,
D.-W.
,
Nie
,
M.
,
Takeuchi
,
S.
,
Ostrovidov
,
S.
,
Khademhosseini
,
A.
,
Kamm
,
R. D.
,
Mironov
,
V.
,
Moroni
,
L.
, and
Ozbolat
,
I. T.
,
2020
, “
The Bioprinting Roadmap
,”
Biofabrication
,
12
(
2
), p.
022002
. 10.1088/1758-5090/ab5158
2.
Mitsuishi
,
M.
,
Cao
,
J.
,
Bártolo
,
P.
,
Friedrich
,
D.
,
Shih
,
A. J.
,
Rajurkar
,
K.
,
Sugita
,
N.
, and
Harada
,
K.
,
2013
, “
Biomanufacturing
,”
CIRP Ann.
,
62
(
2
), pp.
585
606
. 10.1016/j.cirp.2013.05.001
3.
Shih
,
A. J.
,
2008
, “
Biomedical Manufacturing: A New Frontier of Manufacturing Research
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021009
. 10.1115/1.2896116
4.
Shih
,
A. J.
,
Li
,
W.
, and
Huang
,
Y.
,
2018
, “Biomedical Manufacturing,”
Handbook of Manufacturing
,
D.-W.
Cho
World Scientific Publishing Co.
,
Singapore
, pp.
511
540
.
6.
Liaw
,
C.-Y.
, and
Guvendiren
,
M.
,
2017
, “
Current and Emerging Applications of 3D Printing in Medicine
,”
Biofabrication
,
9
(
2
), p.
024102
. 10.1088/1758-5090/aa7279
7.
Bhargav
,
A.
,
Sanjairaj
,
V.
,
Rosa
,
V.
,
Feng
,
L. W.
, and
Yh
,
J. F.
,
2018
, “
Applications of Additive Manufacturing in Dentistry: A Review
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
106
(
5
), pp.
2058
2064
. 10.1002/jbm.b.33961
8.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
. 10.1038/nbt.2958
9.
Culmone
,
C.
,
Smit
,
G.
, and
Breedveld
,
P.
,
2019
, “
Additive Manufacturing of Medical Instruments: A State-of-the-Art Review
,”
Addit. Manuf.
,
27
, pp.
461
473
. 10.1016/j.addma.2019.03.015
10.
Chen
,
R. K.
,
Jin
,
Y.
,
Wensman
,
J.
, and
Shih
,
A.
,
2016
, “
Additive Manufacturing of Custom Orthoses and Prostheses—A Review
,”
Addit. Manuf.
,
12
, pp.
77
89
. 10.1016/j.addma.2016.04.002
11.
Prasad
,
L. K.
, and
Smyth
,
H.
,
2016
, “
3D Printing Technologies for Drug Delivery: A Review
,”
Drug Dev. Ind. Pharm.
,
42
(
7
), pp.
1019
1031
. 10.3109/03639045.2015.1120743
12.
Ballard
,
D. H.
,
Trace
,
A. P.
,
Ali
,
S.
,
Hodgdon
,
T.
,
Zygmont
,
M. E.
,
DeBenedectis
,
C. M.
,
Smith
,
S. E.
,
Richardson
,
M. L.
,
Patel
,
M. J.
,
Decker
,
S. J.
, and
Lenchik
,
L.
,
2018
, “
Clinical Applications of 3D Printing: Primer for Radiologists
,”
Acad. Radiol.
,
25
(
1
), pp.
52
65
. 10.1016/j.acra.2017.08.004
13.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
I
), pp.
525
540
. 10.1016/S0007-8506(07)63240-5
14.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
. 10.1115/1.4028725
15.
Rejeski
,
D.
,
Zhao
,
F.
, and
Huang
,
Y.
,
2018
, “
Research Needs and Recommendations on Environmental Implications of Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
21
28
. 10.1016/j.addma.2017.10.019
16.
Mironov
,
V.
,
Visconti
,
R. P.
,
Kasyanov
,
V.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
. 10.1016/j.biomaterials.2008.12.084
17.
Ringeisen
,
B. R.
,
Pirlo
,
R. K.
,
Wu
,
P. K.
,
Boland
,
T.
,
Huang
,
Y.
,
Sun
,
W.
,
Hamid
,
Q.
, and
Chrisey
,
D. B.
,
2013
, “
Cell and Organ Printing Turns 15: Diverse Research to Commercial Transitions
,”
MRS Bull.
,
38
(
10
), pp.
834
843
. 10.1557/mrs.2013.209
18.
Huang
,
Y.
, and
Schmid
,
S. R.
,
2018
, “
Additive Manufacturing for Health: State of the Art, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
094001
. 10.1115/1.4040430
19.
Zhang
,
Z.
,
Jin
,
Y.
,
Yin
,
J.
,
Xu
,
C.
,
Xiong
,
R.
,
Christensen
,
K.
,
Ringeisen
,
B. R.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2018
, “
Evaluation of Bioink Printability for Bioprinting Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041304
. 10.1063/1.5053979
20.
Ozbolat
,
I.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
. 10.1016/j.biomaterials.2015.10.076
21.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
. 10.1016/j.biomaterials.2009.06.034
22.
Duan
,
B.
,
Hockaday
,
L. A.
,
Kang
,
K. H.
, and
Butcher
,
J. T.
,
2013
, “
3d Bioprinting of Heterogeneous Aortic Valve Conduits With Alginate/Gelatin Hydrogels
,”
J. Biomed. Mater. Res. A
,
101
(
5
), pp.
1255
1264
. 10.1002/jbm.a.34420
23.
Jin
,
Y.
,
Liu
,
C.
,
Chai
,
W.
,
Compaan
,
A.
, and
Huang
,
Y.
,
2017
, “
Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air
,”
ACS Appl. Mater. Interfaces
,
9
(
20
), pp.
17456
17465
. 10.1021/acsami.7b03613
24.
Jin
,
Y.
,
Compaan
,
A.
,
Chai
,
W.
, and
Huang
,
Y.
,
2017
, “
Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20057
20066
. 10.1021/acsami.7b02398
25.
Compaan
,
A. M.
,
Song
,
K.
, and
Huang
,
Y.
,
2019
, “
Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting
,”
ACS Appl. Mater. Interfaces
,
11
(
6
), pp.
5714
5726
. 10.1021/acsami.8b13792
26.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B. J.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
,
2007
, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mater. Sci. Eng. C
,
27
(
3
), pp.
372
376
. 10.1016/j.msec.2006.05.047
27.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
, and
Takiura
,
K.
,
2008
, “
Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-of-the-Art Inkjet Technology
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035001
. 10.1115/1.3002759
28.
Christensen
,
K.
,
Compaan
,
A.
,
Chai
,
W.
,
Xia
,
G.
, and
Huang
,
Y.
,
2017
, “
In Situ Printing-Then-Mixing for Biological Structure Fabrication Using Intersecting Jets
,”
ACS Biomater. Sci. Eng.
,
3
(
12
), pp.
3687
3694
. 10.1021/acsbiomaterials.7b00752
29.
Guillemot
,
F.
,
Souquet
,
A.
,
Catros
,
S.
,
Guillotin
,
B.
,
Lopez
,
J.
,
Faucon
,
M.
,
Pippenger
,
B.
,
Bareille
,
R.
,
Rémy
,
M.
,
Bellance
,
S.
,
Chabassier
,
P.
,
Fricain
,
J. C.
, and
Amédée
,
J.
,
2010
, “
High-Throughput Laser Printing of Cells and Biomaterials for Tissue Engineering
,”
Acta Biomater.
,
6
(
7
), pp.
2494
2500
. 10.1016/j.actbio.2009.09.029
30.
Riggs
,
B. C.
,
Dias
,
A. D.
,
Schiele
,
N. R.
,
Cristescu
,
R.
,
Huang
,
Y.
,
Corr
,
D. T.
, and
Chrisey
,
D. B.
,
2011
, “
Matrix-Assisted Pulsed Laser Methods for Biofabrication
,”
MRS Bull.
,
36
(
12
), pp.
1043
1050
. 10.1557/mrs.2011.276
31.
Xiong
,
R.
,
Zhang
,
Z.
,
Chai
,
W.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs
,”
Biofabrication
,
7
(
4
), p.
045011
. 10.1088/1758-5090/7/4/045011
32.
Ma
,
X.
,
Qu
,
X.
,
Zhu
,
W.
,
Li
,
Y.-S.
,
Yuan
,
S.
,
Zhang
,
H.
,
Liu
,
J.
,
Wang
,
P.
,
Lai
,
C. S. E.
,
Zanella
,
F.
,
Feng
,
G.-S.
,
Sheikh
,
F.
,
Chien
,
S.
, and
Chen
,
S.
,
2016
, “
Deterministically Patterned Biomimetic Human IPSC-Derived Hepatic Model via Rapid 3D Bioprinting
,”
Proc. Natl. Acad. Sci. USA.
,
113
(
8
), pp.
2206
2211
. 10.1073/pnas.1524510113
33.
Jin
,
Y.
,
Compaan
,
A.
,
Bhattacharjee
,
T.
, and
Huang
,
Y.
,
2016
, “
Granular Gel Support-Enabled Extrusion of Three-Dimensional Alginate and Cellular Structures
,”
Biofabrication
,
8
(
2
), p.
025016
. 10.1088/1758-5090/8/2/025016
34.
Pati
,
F.
,
Ha
,
D.-H.
,
Jang
,
J.
,
Han
,
H. H.
,
Rhie
,
J.-W.
, and
Cho
,
D.-W.
,
2015
, “
Biomimetic 3D Tissue Printing for Soft Tissue Regeneration
,”
Biomaterials
,
62
, pp.
164
175
. 10.1016/j.biomaterials.2015.05.043
35.
Jang
,
J.
,
Park
,
H.-J.
,
Kim
,
S.-W.
,
Kim
,
H.
,
Park
,
J. Y.
,
Na
,
S. J.
,
Kim
,
H. J.
,
Park
,
M. N.
,
Choi
,
S. H.
,
Park
,
S. H.
,
Kim
,
S. W.
,
Kwon
,
S.-M.
,
Kim
,
P.-J.
, and
Cho
,
D.-W.
,
2017
, “
3D Printed Complex Tissue Construct Using Stem Cell-Laden Decellularized Extracellular Matrix Bioinks for Cardiac Repair
,”
Biomaterials
,
112
, pp.
264
274
. 10.1016/j.biomaterials.2016.10.026
36.
Owens
,
C. M.
,
Marga
,
F.
,
Forgacs
,
G.
, and
Heesch
,
C. M.
,
2013
, “
Biofabrication and Testing of a Fully Cellular Nerve Graft
,”
Biofabrication
,
5
(
4
), p.
045007
. 10.1088/1758-5082/5/4/045007
37.
Daly
,
A. C.
,
Critchley
,
S. E.
,
Rencsok
,
E. M.
, and
Kelly
,
D. J.
,
2016
, “
A Comparison of Different Bioinks for 3D Bioprinting of Fibrocartilage and Hyaline Cartilage
,”
Biofabrication
,
8
(
4
), p.
045002
. 10.1088/1758-5090/8/4/045002
38.
Zhang
,
Z.-Z.
,
Jiang
,
D.
,
Ding
,
J.-X.
,
Wang
,
S.-J.
,
Zhang
,
L.
,
Zhang
,
J.-Y.
,
Qi
,
Y.-S.
,
Chen
,
X.-S.
, and
Yu
,
J.-K.
,
2016
, “
Role of Scaffold Mean Pore Size in Meniscus Regeneration
,”
Acta Biomater.
,
43
, pp.
314
326
. 10.1016/j.actbio.2016.07.050
39.
Vijayavenkataraman
,
S.
,
Lu
,
W. F.
, and
Fuh
,
J. Y. H.
,
2016
, “
3D Bioprinting of Skin: A State-of-the-Art Review on Modelling, Materials, and Processes
,”
Biofabrication
,
8
(
3
), p.
032001
. 10.1088/1758-5090/8/3/032001
40.
Shao
,
H.
,
Liu
,
A.
,
Ke
,
X.
,
Sun
,
M.
,
He
,
Y.
,
Yang
,
X.
,
Fu
,
J.
,
Zhang
,
L.
,
Yang
,
G.
,
Liu
,
Y.
,
Xu
,
S.
, and
Gou
,
Z.
,
2017
, “
3D Robocasting Magnesium-Doped Wollastonite/TCP Bioceramic Scaffolds With Improved Bone Regeneration Capacity in Critical Sized Calvarial Defects
,”
J. Mater. Chem. B
,
5
(
16
), pp.
2941
2951
. 10.1039/C7TB00217C
41.
Yu
,
Y.
,
Zhang
,
Y.
,
Martin
,
J. A.
, and
Ozbolat
,
I. T.
,
2013
, “
Evaluation of Cell Viability and Functionality in Vessel-Like Bioprintable Cell-Laden Tubular Channels
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091011
. 10.1115/1.4024575
42.
Johnson
,
B. N.
,
Lancaster
,
K. Z.
,
Zhen
,
G.
,
He
,
J.
,
Gupta
,
M. K.
,
Kong
,
Y. L.
,
Engel
,
E. A.
,
Krick
,
K. D.
,
Ju
,
A.
,
Meng
,
F.
,
Enquist
,
L. W.
,
Jia
,
X.
, and
McAlpine
,
M. C.
,
2015
, “
3d Printed Anatomical Nerve Regeneration Pathways
,”
Adv. Funct. Mater.
,
25
(
39
), pp.
6205
6217
. 10.1002/adfm.201501760
43.
Bhattacharjee
,
T.
,
Zehnder
,
S. M.
,
Rowe
,
K. G.
,
Jain
,
S.
,
Nixon
,
R. M.
,
Sawyer
,
W. G.
, and
Angelini
,
T. E.
,
2015
, “
Writing in the Granular Gel Medium
,”
Sci. Adv.
,
1
(
8
), p.
e1500655
. 10.1126/sciadv.1500655
44.
Hinton
,
T. J.
,
Jallerat
,
Q.
,
Palchesko
,
R. N.
,
Park
,
J. H.
,
Grodzicki
,
M. S.
,
Shue
,
H.-J.
,
Ramadan
,
M. H.
,
Hudson
,
A. R.
, and
Feinberg
,
A. W.
,
2015
, “
Three-Dimensional Printing of Complex Biological Structures by Freeform Reversible Embedding of Suspended Hydrogels
,”
Sci. Adv.
,
1
(
9
), p.
e1500758
. 10.1126/sciadv.1500758
45.
Herran
,
C. L.
,
Wang
,
W.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2010
, “
Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051001
. 10.1115/1.4002187
46.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
. 10.1016/j.biomaterials.2004.04.011
47.
Nakamura
,
M.
,
Kobayashi
,
A.
,
Takagi
,
F.
,
Watanabe
,
A.
,
Hiruma
,
Y.
,
Ohuchi
,
K.
,
Iwasaki
,
Y.
,
Horie
,
M.
,
Morita
,
I.
, and
Takatani
,
S.
,
2005
, “
Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells
,”
Tissue Eng.
,
11
(
11–12
), pp.
1658
1666
. 10.1089/ten.2005.11.1658
48.
Xu
,
T.
,
Gregory
,
C.
,
Molnar
,
P.
,
Cui
,
X.
,
Jalota
,
S.
,
Bhaduri
,
S.
, and
Boland
,
T.
,
2006
, “
Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method
,”
Biomaterials
,
27
, pp.
3580
3588
. 10.1016/j.biomaterials.2006.01.048
49.
Saunders
,
R. E.
,
Gough
,
J. E.
, and
Derby
,
B.
,
2008
, “
Delivery of Human Fibroblast Cells by Piezoelectric Drop-on-Demand Inkjet Printing
,”
Biomaterials
,
29
(
2
), pp.
193
203
. 10.1016/j.biomaterials.2007.09.032
50.
Compaan
,
A. M.
,
Christensen
,
K.
, and
Huang
,
Y.
,
2017
, “
Inkjet Bioprinting of 3d Silk Fibroin Cellular Constructs Using Sacrificial Alginate
,”
ACS Biomater. Sci. Eng.
,
3
(
8
), pp.
1519
1526
. 10.1021/acsbiomaterials.6b00432
51.
Lin
,
Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2009
, “
Droplet Formation in Matrix-Assisted Pulsed-Laser Evaporation Direct Writing of Glycerol-Water Solution
,”
J. Appl. Phys.
,
105
(
9
), p.
093111
. 10.1063/1.3116724
52.
Xiong
,
R.
,
Zhang
,
Z.
,
Shen
,
J.
,
Lin
,
Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Bubble Formation Modeling During Laser Direct Writing of Glycerol Solutions
,”
J. Micro Nano-Manuf.
,
3
(
1
), p.
011004
. 10.1115/1.4029264
53.
Zhang
,
Z.
,
Xiong
,
R.
,
Mei
,
R.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Time-Resolved Imaging Study of Jetting Dynamics During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
31
(
23
), pp.
6447
6456
. 10.1021/acs.langmuir.5b00919
54.
Zhang
,
Z.
,
Xiong
,
R.
,
Corr
,
D. T.
, and
Huang
,
Y.
,
2016
, “
Study of Impingement Types and Printing Quality During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
32
(
12
), pp.
3004
3014
. 10.1021/acs.langmuir.6b00220
55.
Lin
,
Y.
, and
Huang
,
Y.
,
2011
, “
Laser-Assisted Fabrication of Highly Viscous Alginate Microsphere
,”
J. Appl. Phys.
,
109
(
8
), p.
083107
. 10.1063/1.3569863
56.
Dinca
,
V.
,
Kasotakis
,
E.
,
Catherine
,
J.
,
Mourka
,
A.
,
Ranella
,
A.
,
Ovsianikov
,
A.
,
Chichkov
,
B. N.
,
Farsari
,
M.
,
Mitraki
,
A.
, and
Fotakis
,
C.
,
2008
, “
Directed Three-Dimensional Patterning of Self-Assembled Peptide Fibrils
,”
Nano Lett.
,
8
(
2
), pp.
538
543
. 10.1021/nl072798r
57.
Colina
,
M.
,
Serra
,
P.
,
Fernández-Pradas
,
J. M.
,
Sevilla
,
L.
, and
Morenza
,
J. L.
,
2005
, “
DNA Deposition Through Laser Induced Forward Transfer
,”
Biosens. Bioelectron.
,
20
(
8
), pp.
1638
1642
. 10.1016/j.bios.2004.08.047
58.
Barron
,
J. A.
,
Wu
,
P.
,
Ladouceur
,
H. D.
, and
Ringeisen
,
B. R.
,
2004
, “
Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-Dimensional Cell Patterns
,”
Biomed. Microdevices
,
6
(
2
), pp.
139
147
. 10.1023/B:BMMD.0000031751.67267.9f
59.
Gruene
,
M.
,
Pflaum
,
M.
,
Hess
,
C.
,
Diamantouros
,
S.
,
Schlie
,
S.
,
Deiwick
,
A.
,
Koch
,
L.
,
Wilhelmi
,
M.
,
Jockenhoevel
,
S.
,
Haverich
,
A.
, and
Chichkov
,
B.
,
2011
, “
Laser Printing of Three-Dimensional Multicellular Arrays for Studies of Cell–Cell and Cell–Environment Interactions
,”
Tissue Eng. Part C Methods
,
17
(
10
), pp.
973
982
. 10.1089/ten.tec.2011.0185
60.
Xiong
,
R.
,
Zhang
,
Z.
,
Chai
,
W.
,
Chrisey
,
D. B.
, and
Huang
,
Y.
,
2017
, “
Study of Gelatin as an Effective Energy Absorbing Layer for Laser Bioprinting
,”
Biofabrication
,
9
(
2
), p.
024103
. 10.1088/1758-5090/aa74f2
61.
Xu
,
C.
,
Zhang
,
M.
,
Huang
,
Y.
,
Ogale
,
A.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2014
, “
Study of Droplet Formation Process During Drop-on-Demand Inkjetting of Living Cell-Laden Bioink
,”
Langmuir
,
30
(
30
), pp.
9130
9138
. 10.1021/la501430x
62.
Xu
,
C.
,
Zhang
,
Z.
,
Fu
,
J.
, and
Huang
,
Y.
,
2017
, “
Study of Pinch-Off Locations During Drop-on-Demand Inkjet Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
33
(
20
), pp.
5037
5045
. 10.1021/acs.langmuir.7b00874
63.
Gudapati
,
H.
,
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2014
, “
Alginate Gelation-Induced Cell Death During Laser-Assisted Cell Printing
,”
Biofabrication
,
6
(
3
), p.
035022
. 10.1088/1758-5082/6/3/035022
64.
Zhang
,
Z.
,
Chai
,
W.
,
Xiong
,
R.
,
Zhou
,
L.
, and
Huang
,
Y.
,
2017
, “
Printing-Induced Cell Injury Evaluation During Laser Printing of 3T3 Mouse Fibroblasts
,”
Biofabrication
,
9
(
2
), p.
025038
. 10.1088/1758-5090/aa6ed9
65.
Liravi
,
F.
, and
Toyserkani
,
E.
,
2018
, “
Additive Manufacturing of Silicone Structures: A Review and Prospective
,”
Addit. Manuf.
,
24
, pp.
232
242
. 10.1016/j.addma.2018.10.002
66.
Plott
,
J.
,
Tian
,
X.
, and
Shih
,
A.
,
2018
, “
Measurement and Modeling of Forces in Extrusion-Based Additive Manufacturing of Flexible Silicone Elastomer With Thin Wall Structures
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091009
. 10.1115/1.4040350
67.
Plott
,
J.
,
Tian
,
X.
, and
Shih
,
A. J.
,
2018
, “
Voids and Tensile Properties in Extrusion-Based Additive Manufacturing of Moisture-Cured Silicone Elastomer
,”
Addit. Manuf.
,
22
, pp.
606
617
. 10.1016/j.addma.2018.06.010
68.
Muthusamy
,
M.
,
Safaee
,
S.
, and
Chen
,
R.
,
2018
, “
Additive Manufacturing of Overhang Structures Using Moisture-Cured Silicone With Support Material
,”
J. Manuf. Mater. Process.
,
2
(
2
), p.
24
. 10.3390/jmmp2020024
69.
Jin
,
Y.
,
Song
,
K.
,
Gellermann
,
N.
, and
Huang
,
Y.
,
2019
, “
Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension
,”
ACS Appl. Mater. Interfaces
,
11
(
32
), pp.
29207
29217
. 10.1021/acsami.9b07433
70.
Plott
,
J.
, and
Shih
,
A.
,
2017
, “
The Extrusion-Based Additive Manufacturing of Moisture-Cured Silicone Elastomer With Minimal Void for Pneumatic Actuators
,”
Addit. Manuf.
,
17
, pp.
1
14
. 10.1016/j.addma.2017.06.009
71.
Riedle
,
H.
,
Seitz
,
V.
,
Schraudolf
,
L.
, and
Franke
,
J.
,
2018
, “
Generation of 3D Silicone Models of Anatomic Soft Tissue Structures—A Comparison of Direct 3d Printing and Molding Techniques
,”
2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)
,
Sarawak, Malaysia
,
Dec. 3–6
, pp.
539
543
.
72.
Truby
,
R. L.
, and
Lewis
,
J. A.
,
2016
, “
Printing Soft Matter in Three Dimensions
,”
Nature
,
540
(
7633
), pp.
371
378
. 10.1038/nature21003
73.
Bhattacharjee
,
N.
,
Parra-Cabrera
,
C.
,
Kim
,
Y. T.
,
Kuo
,
A. P.
, and
Folch
,
A.
,
2018
, “
Desktop-Stereolithography 3d-Printing of a Poly(Dimethylsiloxane)-Based Material With Sylgard-184 Properties
,”
Adv. Mater.
,
30
(
22
), p.
1800001
. 10.1002/adma.201800001
74.
Mizuno
,
Y.
,
Pardivala
,
N.
, and
Tai
,
B. L.
,
2018
, “
Projected UV-Resin Curing for Self-Supported 3D Printing
,”
Manuf. Lett.
,
18
, pp.
24
26
. 10.1016/j.mfglet.2018.09.005
75.
Bourell
,
D.
,
Kruth
,
J. P.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A. M.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
66
(
2
), pp.
659
681
. 10.1016/j.cirp.2017.05.009
76.
Murr
,
L. E.
,
Amato
,
K. N.
,
Li
,
S. J.
,
Tian
,
Y. X.
,
Cheng
,
X. Y.
,
Gaytan
,
S. M.
,
Martinez
,
E.
,
Shindo
,
P. W.
,
Medina
,
F.
, and
Wicker
,
R. B.
,
2011
, “
Microstructure and Mechanical Properties of Open-Cellular Biomaterials Prototypes for Total Knee Replacement Implants Fabricated by Electron Beam Melting
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1396
1411
. 10.1016/j.jmbbm.2011.05.010
77.
Murr
,
L. E.
,
2017
, “
Open-Cellular Metal Implant Design and Fabrication for Biomechanical Compatibility With Bone Using Electron Beam Melting
,”
J. Mech. Behav. Biomed. Mater.
,
76
, pp.
164
177
. 10.1016/j.jmbbm.2017.02.019
78.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
. 10.1002/jor.23075
79.
Plessis
,
A. d.
,
Yadroitsava
,
I.
,
Yadroitsev
,
I.
,
Roux
,
S. l.
, and
Blaine
,
D. C.
,
2018
, “
Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
13
(
4
), pp.
266
281
. 10.1080/17452759.2018.1491713
80.
Zhao
,
X.
,
Li
,
S.
,
Zhang
,
M.
,
Liu
,
Y.
,
Sercombe
,
T. B.
,
Wang
,
S.
,
Hao
,
Y.
,
Yang
,
R.
, and
Murr
,
L. E.
,
2016
, “
Comparison of the Microstructures and Mechanical Properties of Ti–6Al–4 V Fabricated by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
95
, pp.
21
31
. 10.1016/j.matdes.2015.12.135
81.
Parthasarathy
,
J.
,
Starly
,
B.
,
Raman
,
S.
, and
Christensen
,
A.
,
2010
, “
Mechanical Evaluation of Porous Titanium (Ti6Al4 V) Structures With Electron Beam Melting (EBM)
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
3
), pp.
249
259
. 10.1016/j.jmbbm.2009.10.006
82.
Prashanth
,
K. G.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2017
, “
Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting
,”
Acta Mater.
,
126
, pp.
25
35
. 10.1016/j.actamat.2016.12.044
83.
Townsend
,
A.
,
Senin
,
N.
,
Blunt
,
L.
,
Leach
,
R. K.
, and
Taylor
,
J. S.
,
2016
, “
Surface Texture Metrology for Metal Additive Manufacturing: A Review
,”
Precis. Eng.
,
46
, pp.
34
47
. 10.1016/j.precisioneng.2016.06.001
84.
Ataee
,
A.
,
Li
,
Y.
,
Brandt
,
M.
, and
Wen
,
C.
,
2018
, “
Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications
,”
Acta Mater.
,
158
, pp.
354
368
. 10.1016/j.actamat.2018.08.005
85.
Surmeneva
,
M. A.
,
Surmenev
,
R. A.
,
Chudinova
,
E. A.
,
Koptioug
,
A.
,
Tkachev
,
M. S.
,
Gorodzha
,
S. N.
, and
Rännar
,
L.-E.
,
2017
, “
Fabrication of Multiple-Layered Gradient Cellular Metal Scaffold via Electron Beam Melting for Segmental Bone Reconstruction
,”
Mater. Des.
,
133
, pp.
195
204
. 10.1016/j.matdes.2017.07.059
86.
Jardini
,
A. L.
,
Larosa
,
M. A.
,
Filho
,
R. M.
,
Zavaglia
,
C. A. d. C.
,
Bernardes
,
L. F.
,
Lambert
,
C. S.
,
Calderoni
,
D. R.
, and
Kharmandayan
,
P.
,
2014
, “
Cranial Reconstruction: 3D Biomodel and Custom-Built Implant Created Using Additive Manufacturing
,”
J. Cranio-Maxillofac. Surg.
,
42
(
8
), pp.
1877
1884
. 10.1016/j.jcms.2014.07.006
87.
Xu
,
N.
,
Wei
,
F.
,
Liu
,
X.
,
Jiang
,
L.
,
Cai
,
H.
,
Li
,
Z.
,
Yu
,
M.
,
Wu
,
F.
, and
Liu
,
Z.
,
2016
, “
Reconstruction of the Upper Cervical Spine Using a Personalized 3d-Printed Vertebral Body in an Adolescent With Ewing Sarcoma
,”
Spine
,
41
(
1
), p.
E50
. 10.1097/BRS.0000000000001179
88.
Bose
,
S.
,
Ke
,
D.
,
Sahasrabudhe
,
H.
, and
Bandyopadhyay
,
A.
,
2018
, “
Additive Manufacturing of Biomaterials
,”
Prog. Mater. Sci.
,
93
, pp.
45
111
. 10.1016/j.pmatsci.2017.08.003
89.
Attar
,
H.
,
Ehtemam-Haghighi
,
S.
,
Kent
,
D.
,
Wu
,
X.
, and
Dargusch
,
M. S.
,
2017
, “
Comparative Study of Commercially Pure Titanium Produced by Laser Engineered Net Shaping, Selective Laser Melting and Casting Processes
,”
Mater. Sci. Eng. A
,
705
, pp.
385
393
. 10.1016/j.msea.2017.08.103
90.
Bandyopadhyay
,
A.
,
Mitra
,
I.
,
Shivaram
,
A.
,
Dasgupta
,
N.
, and
Bose
,
S.
,
2019
, “
Direct Comparison of Additively Manufactured Porous Titanium and Tantalum Implants Towards In Vivo Osseointegration
,”
Addit. Manuf.
,
28
, pp.
259
266
. 10.1016/j.addma.2019.04.025
91.
Hu
,
Y.
,
Maharubin
,
S.
,
Cong
,
W.
, and
Tan
,
G.
,
2018
, “
Laser Engineered Net Shaping of Titanium-Silver Alloy for Orthopedic Implant
,”
Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing
,
College Station, TX
,
June 18–22
, p. V001T05A016. 10.1115/MSEC2018-6611
92.
Wang
,
B.
,
Hao
,
Y.
,
Pu
,
F.
,
Jiang
,
W.
, and
Shao
,
Z.
,
2018
, “
Computer-Aided Designed, Three Dimensional-Printed Hemipelvic Prosthesis for Peri-Acetabular Malignant Bone Tumour
,”
Int. Orthop.
,
42
(
3
), pp.
687
694
. 10.1007/s00264-017-3645-5
93.
Liang
,
H.
,
Ji
,
T.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Guo
,
W.
,
2017
, “
Reconstruction With 3D-Printed Pelvic Endoprostheses After Resection of a Pelvic Tumour
,”
Bone Jt. J.
,
99-B
(
2
), pp.
267
275
. 10.1302/0301-620X.99B2.BJJ-2016-0654.R1
94.
Wong
,
K. C.
,
Kumta
,
S. M.
,
Geel
,
N. V.
, and
Demol
,
J.
,
2015
, “
One-Step Reconstruction With a 3D-Printed, Biomechanically Evaluated Custom Implant After Complex Pelvic Tumor Resection
,”
Comput. Aided Surg.
,
20
(
1
), pp.
14
23
. 10.3109/10929088.2015.1076039
95.
Tourlomousis
,
F.
,
Jia
,
C.
,
Karydis
,
T.
,
Mershin
,
A.
,
Wang
,
H.
,
Kalyon
,
D. M.
, and
Chang
,
R. C.
,
2019
, “
Machine Learning Metrology of Cell Confinement in Melt Electrowritten Three-Dimensional Biomaterial Substrates
,”
Microsyst. Nanoeng.
,
5
(
1
), pp.
1
19
. 10.1038/s41378-019-0055-4
96.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
. 10.1016/j.compstruct.2017.08.088
97.
Knowlton
,
S.
,
Yu
,
C. H.
,
Ersoy
,
F.
,
Emadi
,
S.
,
Khademhosseini
,
A.
, and
Tasoglu
,
S.
,
2016
, “
3D-Printed Microfluidic Chips With Patterned, Cell-Laden Hydrogel Constructs
,”
Biofabrication
,
8
(
2
), p.
025019
. 10.1088/1758-5090/8/2/025019
98.
Ning
,
F.
,
Cong
,
W.
,
Qiu
,
J.
,
Wei
,
J.
, and
Wang
,
S.
,
2015
, “
Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling
,”
Compos. Part B Eng.
,
80
, pp.
369
378
. 10.1016/j.compositesb.2015.06.013
99.
Tekinalp
,
H. L.
,
Kunc
,
V.
,
Velez-Garcia
,
G. M.
,
Duty
,
C. E.
,
Love
,
L. J.
,
Naskar
,
A. K.
,
Blue
,
C. A.
, and
Ozcan
,
S.
,
2014
, “
Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing
,”
Compos. Sci. Technol.
,
105
, pp.
144
150
. 10.1016/j.compscitech.2014.10.009
100.
Mantelli
,
A.
,
Levi
,
M.
,
Turri
,
S.
, and
Suriano
,
R.
,
2019
, “
Remanufacturing of End-of-Life Glass-Fiber Reinforced Composites via UV-Assisted 3D Printing
,”
Rapid Prototyp. J.
,
26
(
6
), pp.
981
992
. 10.1108/RPJ-01-2019-0011
101.
Ryder
,
M. A.
,
Lados
,
D. A.
,
Iannacchione
,
G. S.
, and
Peterson
,
A. M.
,
2018
, “
Fabrication and Properties of Novel Polymer-Metal Composites Using Fused Deposition Modeling
,”
Compos. Sci. Technol.
,
158
, pp.
43
50
. 10.1016/j.compscitech.2018.01.049
102.
Melchels
,
F. P. W.
,
Feijen
,
J.
, and
Grijpma
,
D. W.
,
2010
, “
A Review on Stereolithography and Its Applications in Biomedical Engineering
,”
Biomaterials
,
31
(
24
), pp.
6121
30
. 10.1016/j.biomaterials.2010.04.050
103.
Dawood
,
A.
,
Marti
,
B. M.
,
Sauret-Jackson
,
V.
, and
Darwood
,
A.
,
2015
, “
3D Printing in Dentistry
,”
Br. Dent. J.
,
219
(
11
), pp.
521
529
. 10.1038/sj.bdj.2015.914
104.
Manapat
,
J. Z.
,
Chen
,
Q.
,
Ye
,
P.
, and
Advincula
,
R. C.
,
2017
, “
3D Printing of Polymer Nanocomposites via Stereolithography
,”
Macromol. Mater. Eng.
,
302
(
9
), p.
1600553
. 10.1002/mame.201600553
105.
Xu
,
K.
, and
Chen
,
Y.
,
2015
, “
Mask Image Planning for Deformation Control in Projection-Based Stereolithography Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031014
. 10.1115/1.4029802
106.
Pan
,
Y.
, and
Chen
,
Y.
,
2016
, “
Meniscus Process Optimization for Smooth Surface Fabrication in Stereolithography
,”
Addit. Manuf.
,
12
, pp.
321
333
. 10.1016/j.addma.2016.05.004
107.
Huang
,
S.
,
Li
,
M.
,
Shen
,
L.
,
Qiu
,
J.
, and
Zhou
,
Y.
,
2017
, “
Improved Slicing Strategy for Digital Micromirror Device-Based Three-Dimensional Lithography With a Single Scan
,”
Micro Nano Lett.
,
12
(
1
), pp.
49
52
. 10.1049/mnl.2016.0420
108.
Kim
,
Y.
,
Castro
,
K.
,
Bhattacharjee
,
N.
, and
Folch
,
A.
,
2018
, “
Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography
,”
Micromachines
,
9
(
3
), p.
125
. 10.3390/mi9030125
109.
Wicker
,
R. B.
, and
MacDonald
,
E. W.
,
2012
, “
Multi-Material, Multi-Technology Stereolithography
,”
Virtual Phys. Prototyp.
,
7
(
3
), pp.
181
194
. 10.1080/17452759.2012.721119
110.
Nagarajan
,
B.
,
Arshad
,
M.
,
Ullah
,
A.
,
Mertiny
,
P.
, and
Qureshi
,
A. J.
,
2019
, “
Additive Manufacturing Ferromagnetic Polymers Using Stereolithography—Materials and Process Development
,”
Manuf. Lett.
,
21
, pp.
12
16
. 10.1016/j.mfglet.2019.06.003
111.
D’Amora
,
U.
,
Russo
,
T.
,
Gloria
,
A.
,
Rivieccio
,
V.
,
D’Antò
,
V.
,
Negri
,
G.
,
Ambrosio
,
L.
, and
De Santis
,
R.
,
2017
, “
3D Additive-Manufactured Nanocomposite Magnetic Scaffolds: Effect of the Application Mode of a Time-Dependent Magnetic Field on HMSCs Behavior
,”
Bioact. Mater.
,
2
(
3
), pp.
138
145
. 10.1016/j.bioactmat.2017.04.003
112.
Martin
,
J. J.
,
Fiore
,
B. E.
, and
Erb
,
R. M.
,
2015
, “
Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing
,”
Nat. Commun.
,
6
(
1
), p.
8641
. 10.1038/ncomms9641
113.
Song
,
X.
,
Chen
,
Y.
,
Lee
,
T. W.
,
Wu
,
S.
, and
Cheng
,
L.
,
2015
, “
Ceramic Fabrication Using Mask-Image-Projection-Based Stereolithography Integrated With Tape-Casting
,”
J. Manuf. Process.
,
20
, pp.
456
464
. 10.1016/j.jmapro.2015.06.022
114.
Griffini
,
G.
,
Invernizzi
,
M.
,
Levi
,
M.
,
Natale
,
G.
,
Postiglione
,
G.
, and
Turri
,
S.
,
2016
, “
3D-Printable CFR Polymer Composites With Dual-Cure Sequential IPNs
,”
Polymer
,
91
, pp.
174
179
. 10.1016/j.polymer.2016.03.048
115.
Wang
,
J.
,
Xue
,
Z.
,
Li
,
G.
,
Wang
,
Y.
,
Fu
,
X.
,
Zhong
,
W.-H.
, and
Yang
,
X.
,
2018
, “
A UV-Curable Epoxy with ‘Soft’ Segments for 3D-Printable Shape-Memory Materials
,”
J. Mater. Sci.
,
53
(
17
), pp.
12650
12661
. 10.1007/s10853-018-2520-0
116.
Lu
,
L.
,
Baynojir Joyee
,
E.
, and
Pan
,
Y.
,
2017
, “
Correlation Between Microscale Magnetic Particle Distribution and Magnetic-Field-Responsive Performance of Three-Dimensional Printed Composites
,”
J. Micro Nano-Manuf.
,
6
(
1
), p.
010904
. 10.1115/1.4038574
117.
Safaee
,
S.
, and
Chen
,
R.
,
2019
, “
Investigation of a Magnetic Field-Assisted Digital-Light-Processing Stereolithography for Functionally Graded Materials
,”
Procedia Manuf.
,
34
, pp.
731
737
. 10.1016/j.promfg.2019.06.229
118.
Pousett
,
B.
,
Lizcano
,
A.
, and
Raschke
,
S. U.
,
2019
, “
An Investigation of the Structural Strength of Transtibial Sockets Fabricated Using Conventional Methods and Rapid Prototyping Techniques
,”
Candian Prosthet. Orthot. J.
,
2
(
1
), pp.
1
10
. 10.33137/cpoj.v2i1.31008
119.
Warder
,
H. H.
,
Fairley
,
J. K.
,
Coutts
,
J.
,
Glisson
,
R. R.
, and
Gall
,
K.
,
2018
, “
Examining the Viability of Carbon Fiber Reinforced Three-Dimensionally Printed Prosthetic Feet Created by Composite Filament Fabrication
,”
Prosthet. Orthot. Int.
,
42
(
6
), pp.
644
651
. 10.1177/0309364618785726
120.
Türk
,
D.-A.
,
Einarsson
,
H.
,
Lecomte
,
C.
, and
Meboldt
,
M.
,
2018
, “
Design and Manufacturing of High-Performance Prostheses With Additive Manufacturing and Fiber-Reinforced Polymers
,”
Prod. Eng.
,
12
(
2
), pp.
203
213
. 10.1007/s11740-018-0799-y
121.
Yeh
,
C.-H.
,
Tsai
,
Y.-C.
,
Su
,
F.-C.
,
Kuo
,
L.-C.
,
Chang
,
K.
, and
Chuang
,
P.-H.
,
2018
, “
Mechanical Problem in 3D Printed Ankle-Foot Orthoses With Function of Energy Storage
,”
AIP Conf. Proc.
,
2046
(
1
), p.
020019
. 10.1063/1.5081539
122.
Maroti
,
P.
,
Varga
,
P.
,
Abraham
,
H.
,
Falk
,
G.
,
Zsebe
,
T.
,
Meiszterics
,
Z.
,
Mano
,
S.
,
Csernatony
,
Z.
,
Rendeki
,
S.
, and
Nyitrai
,
M.
,
2018
, “
Printing Orientation Defines Anisotropic Mechanical Properties in Additive Manufacturing of Upper Limb Prosthetics
,”
Mater. Res. Express
,
6
(
3
), p.
035403
. 10.1088/2053-1591/aaf5a9
123.
Porter
,
J. H.
,
Cain
,
T. M.
,
Fox
,
S. L.
, and
Harvey
,
P. S.
,
2019
, “
Influence of Infill Properties on Flexural Rigidity of 3D-Printed Structural Members
,”
Virtual Phys. Prototyp.
,
14
(
2
), pp.
148
159
. 10.1080/17452759.2018.1537064
124.
Wojciechowski
,
E.
,
Chang
,
A. Y.
,
Balassone
,
D.
,
Ford
,
J.
,
Cheng
,
T. L.
,
Little
,
D.
,
Menezes
,
M. P.
,
Hogan
,
S.
, and
Burns
,
J.
,
2019
, “
Feasibility of Designing, Manufacturing and Delivering 3D Printed Ankle-Foot Orthoses: A Systematic Review
,”
J. Foot Ankle Res.
,
12
(
1
), p.
11
. 10.1186/s13047-019-0321-6
125.
Liu
,
Z.
,
Zhang
,
P.
,
Yan
,
M.
,
Xie
,
Y.
, and
Huang
,
G.
,
2019
, “
Additive Manufacturing of Specific Ankle-Foot Orthoses for Persons After Stroke: A Preliminary Study Based on Gait Analysis Data
,”
Math. Biosci. Eng.
,
16
(
6
), pp.
8134
8143
. 10.3934/mbe.2019410
126.
Nguyen
,
K.-T.
,
Benabou
,
L.
, and
Alfayad
,
S.
,
2018
, “
Systematic Review of Prosthetic Socket Fabrication Using 3D Printing
,”
Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering
,
Valenciennes, France
,
Feb. 7–11
, New York, pp.
137
141
. https://doi.org/10.1145/3191477.3191506
127.
Day
,
S. J.
, and
Riley
,
S. P.
,
2018
, “
Utilising Three-Dimensional Printing Techniques When Providing Unique Assistive Devices: A Case Report
,”
Prosthet. Orthot. Int.
,
42
(
1
), pp.
45
49
. 10.1177/0309364617741776
128.
Leite
,
M.
,
Soares
,
B.
,
Lopes
,
V.
,
Santos
,
S.
, and
Silva
,
M. T.
,
2019
, “
Design for Personalized Medicine in Orthotics and Prosthetics
,”
Procedia CIRP
,
84
, pp.
457
461
. 10.1016/j.procir.2019.04.254
129.
Li
,
J.
, and
Tanaka
,
H.
,
2018
, “
Rapid Customization System for 3D-Printed Splint Using Programmable Modeling Technique—A Practical Approach
,”
3D Print. Med.
,
4
(
1
), p.
5
. 10.1186/s41205-018-0027-6
130.
Shih
,
A.
,
Park
,
D. W.
,
Yang
,
Y.-Y.
,
Chisena
,
R.
, and
Wu
,
D.
,
2017
, “
Cloud-Based Design and Additive Manufacturing of Custom Orthoses
,”
Procedia CIRP
,
63
, pp.
156
160
. 10.1016/j.procir.2017.03.355
131.
Day
,
S.
,
2020
, “14—Using Rapid Prototyping in Prosthetics: Design Considerations,”
Rapid Prototyping of Biomaterials
, 2nd ed.,
R
.
Narayan
, ed.,
Elsevier
, pp.
325
338
.
132.
Lim
,
Y.-E.
,
Kim
,
N.-H.
,
Choi
,
H.-J.
, and
Park
,
K.
,
2017
, “
Design for Additive Manufacturing of Customized Cast With Porous Shell Structures
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5477
5483
. 10.1007/s12206-017-1042-z
133.
Park
,
J.-H.
,
Goo
,
B.
, and
Park
,
K.
,
2019
, “
Topology Optimization and Additive Manufacturing of Customized Sports Item Considering Orthotropic Anisotropy
,”
Int. J. Precis. Eng. Manuf.
,
20
(
8
), pp.
1443
1450
. 10.1007/s12541-019-00163-4
134.
Jin
,
Y.
,
He
,
Y.
, and
Shih
,
A.
,
2016
, “
Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses
,”
Procedia CIRP
,
42
, pp.
760
765
. 10.1016/j.procir.2016.02.315
135.
Martinez-Marquez
,
D.
,
Jokymaityte
,
M.
,
Mirnajafizadeh
,
A.
,
Carty
,
C. P.
,
Lloyd
,
D.
, and
Stewart
,
R. A.
,
2019
, “
Development of 18 Quality Control Gates for Additive Manufacturing of Error Free Patient-Specific Implants
,”
Materials
,
12
(
19
), p.
3110
. 10.3390/ma12193110
136.
Norman
,
J.
,
Madurawe
,
R. D.
,
Moore
,
C. M. V.
,
Khan
,
M. A.
, and
Khairuzzaman
,
A.
,
2017
, “
A New Chapter in Pharmaceutical Manufacturing: 3D-Printed Drug Products
,”
Adv. Drug Deliv. Rev.
,
108
(
1
), pp.
39
50
. 10.1016/j.addr.2016.03.001
137.
The Medical Letter
,
2016
, “
Spritam—A New Formulation of Levetiracetam for Epilepsy
,”
Med. Lett. Drugs Ther.
,
58
(
1497
), pp.
78
79
.
138.
Castellano
,
J. M.
,
Sanz
,
G.
,
Peñalvo
,
J. L.
,
Bansilal
,
S.
,
Fernández-Ortiz
,
A.
,
Alvarez
,
L.
,
Guzmán
,
L.
,
Linares
,
J. C.
,
García
,
F.
,
D’Aniello
,
F.
,
Arnáiz
,
J. A.
,
Varea
,
S.
,
Martínez
,
F.
,
Lorenzatti
,
A.
,
Imaz
,
I.
,
Sánchez-Gómez
,
L. M.
,
Roncaglioni
,
M. C.
,
Baviera
,
M.
,
Smith
,
S. C.
,
Taubert
,
K.
,
Pocock
,
S.
,
Brotons
,
C.
,
Farkouh
,
M. E.
, and
Fuster
,
V.
,
2014
, “
A Polypill Strategy to Improve Adherence: Results From the FOCUS Project
,”
J. Am. Coll. Cardiol.
,
64
(
20
), pp.
2071
2082
. 10.1016/j.jacc.2014.08.021
139.
Fonseca
,
V.
,
Rosenstock
,
J.
,
Patwardhan
,
R.
, and
Salzman
,
A.
,
2000
, “
Effect of Metformin and Rosiglitazone Combination Therapy in Patients With Type 2 Diabetes Mellitus: A Randomized Controlled Trial
,”
JAMA
,
283
(
13
), pp.
1695
1702
. 10.1001/jama.283.13.1695
140.
Gradman
,
A. H.
,
Basile
,
J. N.
,
Carter
,
B. L.
, and
Bakris
,
G. L.
,
2010
, “
Combination Therapy in Hypertension
,”
J. Am. Soc. Hypertens.
,
4
(
2
), pp.
90
98
. 10.1016/j.jash.2010.03.001
141.
Cruz
,
A. T.
,
Garcia-Prats
,
A. J.
,
Furin
,
J.
, and
Seddon
,
J. A.
,
2018
, “
Treatment of Multidrug-Resistant Tuberculosis Infection in Children
,”
Pediatr. Infect. Dis. J.
,
37
(
8
), pp.
831
834
. 10.1097/INF.0000000000002087
142.
Weverling
,
G. J.
,
Lange
,
J. M. A.
,
Jurriaans
,
S.
,
Prins
,
J. M.
,
Lukashov
,
V. V.
,
Notermans
,
D. W.
,
Roos
,
M.
,
Schuitemaker
,
H.
,
Hoetelmans
,
R. M. W.
,
Danner
,
S. A.
,
Goudsmit
,
J.
, and
de Wolf
,
F.
,
1998
, “
Alternative Multidrug Regimen Provides Improved Suppression of HIV-1 Replication Over Triple Therapy
,”
AIDS
,
12
(
11
), pp.
F117
F122
. 10.1097/00002030-199811000-00003
143.
The Indian Polycap Study (TIPS)
,
2009
, “
Effects of a Polypill (Polycap) on Risk Factors in Middle-Aged Individuals Without Cardiovascular Disease (TIPS): A Phase II, Double-Blind, Randomised Trial
,”
The Lancet
,
373
(
9672
), pp.
1341
1351
. 10.1016/S0140-6736(09)60611-5
144.
Patel
,
A.
,
Shah
,
T.
,
Shah
,
G.
,
Jha
,
V.
,
Ghosh
,
C.
,
Desai
,
J.
,
Khamar
,
B.
, and
Chakraborty
,
B. S.
,
2010
, “
Preservation of Bioavailability of Ingredients and Lack of Drug-Drug Interactions in a Novel Five-Ingredient Polypill (PolycapTM)
,”
Am. J. Cardiovasc. Drugs
,
10
(
2
), pp.
95
103
. 10.2165/11532170-000000000-00000
145.
Fina
,
F.
,
Goyanes
,
A.
,
Madla
,
C. M.
,
Awad
,
A.
,
Trenfield
,
S. J.
,
Kuek
,
J. M.
,
Patel
,
P.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2018
, “
3D Printing of Drug-Loaded Gyroid Lattices Using Selective Laser Sintering
,”
Int. J. Pharm.
,
547
(
1
), pp.
44
52
. 10.1016/j.ijpharm.2018.05.044
146.
Genina
,
N.
,
Boetker
,
J. P.
,
Colombo
,
S.
,
Harmankaya
,
N.
,
Rantanen
,
J.
, and
Bohr
,
A.
,
2017
, “
Anti-Tuberculosis Drug Combination for Controlled Oral Delivery Using 3D Printed Compartmental Dosage Forms: From Drug Product Design to In Vivo Testing
,”
J. Controlled Release
,
268
, pp.
40
48
. 10.1016/j.jconrel.2017.10.003
147.
Pereira
,
B. C.
,
Isreb
,
A.
,
Forbes
,
R. T.
,
Dores
,
F.
,
Habashy
,
R.
,
Petit
,
J.-B.
,
Alhnan
,
M. A.
, and
Oga
,
E. F.
,
2019
, “
‘Temporary Plasticiser’: A Novel Solution to Fabricate 3D Printed Patient-Centred Cardiovascular ‘Polypill’ Architectures
,”
Eur. J. Pharm. Biopharm.
,
135
, pp.
94
103
. 10.1016/j.ejpb.2018.12.009
148.
Alomari
,
M.
,
Vuddanda
,
P. R.
,
Trenfield
,
S. J.
,
Dodoo
,
C. C.
,
Velaga
,
S.
,
Basit
,
A. W.
, and
Gaisford
,
S.
,
2018
, “
Printing T3 and T4 Oral Drug Combinations as a Novel Strategy for Hypothyroidism
,”
Int. J. Pharm.
,
549
(
1
), pp.
363
369
. 10.1016/j.ijpharm.2018.07.062
149.
Khaled
,
S. A.
,
Burley
,
J. C.
,
Alexander
,
M. R.
,
Yang
,
J.
, and
Roberts
,
C. J.
,
2015
, “
3D Printing of Five-in-One Dose Combination Polypill With Defined Immediate and Sustained Release Profiles
,”
J. Controlled Release
,
217
, pp.
308
314
. 10.1016/j.jconrel.2015.09.028
150.
Khaled
,
S. A.
,
Burley
,
J. C.
,
Alexander
,
M. R.
,
Yang
,
J.
, and
Roberts
,
C. J.
,
2015
, “
3D Printing of Tablets Containing Multiple Drugs With Defined Release Profiles
,”
Int. J. Pharm.
,
494
(
2
), pp.
643
650
. 10.1016/j.ijpharm.2015.07.067
151.
Chai
,
X.
,
Chai
,
H.
,
Wang
,
X.
,
Yang
,
J.
,
Li
,
J.
,
Zhao
,
Y.
,
Cai
,
W.
,
Tao
,
T.
, and
Xiang
,
X.
,
2017
, “
Fused Deposition Modeling (Fdm) 3d Printed Tablets for Intragastric Floating Delivery of Domperidone
,”
Sci. Rep.
,
7
(
1
), pp.
1
9
. 10.1038/s41598-017-03097-x
152.
Wang
,
J.
,
Goyanes
,
A.
,
Gaisford
,
S.
, and
Basit
,
A. W.
,
2016
, “
Stereolithographic (SLA) 3D Printing of Oral Modified-Release Dosage Forms
,”
Int. J. Pharm.
,
503
(
1
), pp.
207
212
. 10.1016/j.ijpharm.2016.03.016
153.
Yu
,
D. G.
,
Yang
,
X. L.
,
Huang
,
W. D.
,
Liu
,
J.
,
Wang
,
Y. G.
, and
Xu
,
H.
,
2007
, “
Tablets With Material Gradients Fabricated by Three-Dimensional Printing
,”
J. Pharm. Sci.
,
96
(
9
), pp.
2446
2456
. 10.1002/jps.20864
154.
Yi
,
H.-G.
,
Choi
,
Y.-J.
,
Kang
,
K. S.
,
Hong
,
J. M.
,
Pati
,
R. G.
,
Park
,
M. N.
,
Shim
,
I. K.
,
Lee
,
C. M.
,
Kim
,
S. C.
, and
Cho
,
D.-W.
,
2016
, “
A 3D-Printed Local Drug Delivery Patch for Pancreatic Cancer Growth Suppression
,”
J. Controlled Release
,
238
, pp.
231
241
. 10.1016/j.jconrel.2016.06.015
155.
Misra
,
S. K.
,
Ostadhossein
,
F.
,
Babu
,
R.
,
Kus
,
J.
,
Tankasala
,
D.
,
Sutrisno
,
A.
,
Walsh
,
K. A.
,
Bromfield
,
C. R.
, and
Pan
,
D.
,
2017
, “
3D-Printed Multidrug-Eluting Stent From Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite
,”
Adv. Healthc. Mater.
,
6
(
11
), p.
1700008
. 10.1002/adhm.201700008
156.
Ballard
,
D. H.
,
Weisman
,
J. A.
,
Jammalamadaka
,
U.
,
Tappa
,
K.
,
Alexander
,
J. S.
, and
Griffen
,
F. D.
,
2017
, “
Three-Dimensional Printing of Bioactive Hernia Meshes: In Vitro Proof of Principle
,”
Surgery
,
161
(
6
), pp.
1479
1481
. 10.1016/j.surg.2016.08.033
157.
Lith
,
R. v.
,
Baker
,
E.
,
Ware
,
H.
,
Yang
,
J.
,
Farsheed
,
A. C.
,
Sun
,
C.
, and
Ameer
,
G.
,
2016
, “
3d-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents
,”
Adv. Mater. Technol.
,
1
(
9
), p.
1600138
. 10.1002/admt.201600138
158.
Wang
,
J.-C.
,
Zheng
,
H.
,
Chang
,
M.-W.
,
Ahmad
,
Z.
, and
Li
,
J.-S.
,
2017
, “
Preparation of Active 3D Film Patches via Aligned Fiber Electrohydrodynamic (EHD) Printing
,”
Sci. Rep.
,
7
(
1
), p.
43924
. 10.1038/srep43924
159.
Wu
,
W.
,
Ye
,
C.
,
Zheng
,
Q.
,
Wu
,
G.
, and
Cheng
,
Z.
,
2016
, “
A Therapeutic Delivery System for Chronic Osteomyelitis via a Multi-Drug Implant Based on Three-Dimensional Printing Technology
,”
J. Biomater. Appl.
,
31
(
2
), pp.
250
260
. 10.1177/0885328216640660
160.
Parry
,
J. A.
,
Olthof
,
M. G. L.
,
Shogren
,
K. L.
,
Dadsetan
,
M.
,
Van Wijnen
,
A.
,
Yaszemski
,
M.
, and
Kakar
,
S.
,
2017
, “
Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds With Delayed Rhbmp-2 Release for Anterior Cruciate Ligament Graft Fixation
,”
Tissue Eng. Part A
,
23
(
7–8
), pp.
359
365
. 10.1089/ten.tea.2016.0343
161.
Maher
,
S.
,
Kaur
,
G.
,
Lima-Marques
,
L.
,
Evdokiou
,
A.
, and
Losic
,
D.
,
2017
, “
Engineering of Micro- to Nanostructured 3d-Printed Drug-Releasing Titanium Implants for Enhanced Osseointegration and Localized Delivery of Anticancer Drugs
,”
ACS Appl. Mater. Interfaces
,
9
(
35
), pp.
29562
29570
. 10.1021/acsami.7b09916
162.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Direct Cell Writing of 3d Microorgan for In Vitro Pharmacokinetic Model
,”
Tissue Eng. Part C Methods
,
14
(
2
), pp.
157
166
. 10.1089/ten.tec.2007.0392
163.
Chang
,
R.
,
Emami
,
K.
,
Wu
,
H.
, and
Sun
,
W.
,
2010
, “
Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model
,”
Biofabrication
,
2
(
4
), p.
045004
. 10.1088/1758-5082/2/4/045004
164.
Knowlton
,
S.
, and
Tasoglu
,
S.
,
2016
, “
A Bioprinted Liver-on-a-Chip for Drug Screening Applications
,”
Trends Biotechnol.
,
34
(
9
), pp.
681
682
. 10.1016/j.tibtech.2016.05.014
165.
Zhang
,
Y. S.
,
Arneri
,
A.
,
Bersini
,
S.
,
Shin
,
S.-R.
,
Zhu
,
K.
,
Goli-Malekabadi
,
Z.
,
Aleman
,
J.
,
Colosi
,
C.
,
Busignani
,
F.
,
Dell’Erba
,
V.
,
Bishop
,
C.
,
Shupe
,
T.
,
Demarchi
,
D.
,
Moretti
,
M.
,
Rasponi
,
M.
,
Dokmeci
,
M. R.
,
Atala
,
A.
, and
Khademhosseini
,
A.
,
2016
, “
Bioprinting 3D Microfibrous Scaffolds for Engineering Endothelialized Myocardium and Heart-on-a-Chip
,”
Biomaterials
,
110
, pp.
45
59
. 10.1016/j.biomaterials.2016.09.003
166.
Homan
,
K. A.
,
Kolesky
,
D. B.
,
Skylar-Scott
,
M. A.
,
Herrmann
,
J.
,
Obuobi
,
H.
,
Moisan
,
A.
, and
Lewis
,
J. A.
,
2016
, “
Bioprinting of 3d Convoluted Renal Proximal Tubules on Perfusable Chips
,”
Sci. Rep.
,
6
(
1
), p.
34845
. 10.1038/srep34845
167.
Ding
,
H.
,
Illsley
,
N. P.
, and
Chang
,
R. C.
,
2019
, “
3D Bioprinted GelMA Based Models for the Study of Trophoblast Cell Invasion
,”
Sci. Rep.
,
9
(
1
), p.
18854
. 10.1038/s41598-019-55052-7
168.
Snyder
,
J. E.
,
Hamid
,
Q.
,
Wang
,
C.
,
Chang
,
R.
,
Emami
,
K.
,
Wu
,
H.
, and
Sun
,
W.
,
2011
, “
Bioprinting Cell-Laden Matrigel for Radioprotection Study of Liver by pro-Drug Conversion in a Dual-Tissue Microfluidic Chip
,”
Biofabrication
,
3
(
3
), p.
034112
. 10.1088/1758-5082/3/3/034112
169.
Sun
,
W.
,
Chang
,
R. C.
,
Starly
,
B.
, and
Nam
,
J.
,
2009
, “
Bioprinting Three-Dimensional Structure Onto Microscale Tissue Analog Devices for Pharmacokinetic Study and Other Uses
,” U.S. Patent Application 12/297,305.
170.
Bhise
,
N. S.
,
Manoharan
,
V.
,
Massa
,
S.
,
Tamayol
,
A.
,
Ghaderi
,
M.
,
Miscuglio
,
M.
,
Lang
,
Q.
,
Zhang
,
Y. S.
,
Shin
,
S. R.
,
Calzone
,
G.
,
Annabi
,
N.
,
Shupe
,
T. D.
,
Bishop
,
C. E.
,
Atala
,
A.
,
Dokmeci
,
M. R.
, and
Khademhosseini
,
A.
,
2016
, “
A Liver-on-a-Chip Platform With Bioprinted Hepatic Spheroids
,”
Biofabrication
,
8
(
1
), p.
014101
. 10.1088/1758-5090/8/1/014101
171.
Park
,
J. Y.
,
Ryu
,
H.
,
Lee
,
B.
,
Ha
,
D.-H.
,
Ahn
,
M.
,
Kim
,
S.
,
Kim
,
J. Y.
,
Jeon
,
N. L.
, and
Cho
,
D.-W.
,
2018
, “
Development of a Functional Airway-on-a-Chip by 3D Cell Printing
,”
Biofabrication
,
11
(
1
), p.
015002
. 10.1088/1758-5090/aae545
172.
Hamid
,
Q.
,
Wang
,
C.
,
Snyder
,
J.
,
Williams
,
S.
,
Liu
,
Y.
, and
Sun
,
W.
,
2015
, “
Maskless Fabrication of Cell-Laden Microfluidic Chips With Localized Surface Functionalization for the Co-Culture of Cancer Cells
,”
Biofabrication
,
7
(
1
), p.
015012
. 10.1088/1758-5090/7/1/015012
173.
Tourlomousis
,
F.
, and
Chang
,
R. C.
,
2016
, “
Numerical Investigation of Dynamic Microorgan Devices as Drug Screening Platforms. Part II: Microscale Modeling Approach and Validation
,”
Biotechnol. Bioeng.
,
113
(
3
), pp.
623
634
. 10.1002/bit.25824
174.
Gu
,
Q.
,
Tomaskovic-Crook
,
E.
,
Lozano
,
R.
,
Chen
,
Y.
,
Kapsa
,
R. M.
,
Zhou
,
Q.
,
Wallace
,
G. G.
, and
Crook
,
J. M.
,
2016
, “
Functional 3D Neural Mini-Tissues From Printed Gel-Based Bioink and Human Neural Stem Cells
,”
Adv. Healthc. Mater.
,
5
(
12
), pp.
1429
1438
. 10.1002/adhm.201600095
175.
Souza
,
G. R.
,
Tseng
,
H.
,
Gage
,
J. A.
,
Mani
,
A.
,
Desai
,
P.
,
Leonard
,
F.
,
Liao
,
A.
,
Longo
,
M.
,
Refuerzo
,
J. S.
, and
Godin
,
B.
,
2017
, “
Magnetically Bioprinted Human Myometrial 3d Cell Rings as a Model for Uterine Contractility
,”
Int. J. Mol. Sci.
,
18
(
4
), p.
683
. 10.3390/ijms18040683
176.
Dai
,
X.
,
Ma
,
C.
,
Lan
,
Q.
, and
Xu
,
T.
,
2016
, “
3D Bioprinted Glioma Stem Cells for Brain Tumor Model and Applications of Drug Susceptibility
,”
Biofabrication
,
8
(
4
), p.
045005
. 10.1088/1758-5090/8/4/045005
177.
Chaicharoenaudomrung
,
N.
,
Kunhorm
,
P.
,
Promjantuek
,
W.
,
Heebkaew
,
N.
,
Rujanapun
,
N.
, and
Noisa
,
P.
,
2019
, “
Fabrication of 3D Calcium-Alginate Scaffolds for Human Glioblastoma Modeling and Anticancer Drug Response Evaluation
,”
J. Cell. Physiol.
,
234
(
11
), pp.
20085
20097
. 10.1002/jcp.28608
178.
Zhao
,
Y.
,
Yao
,
R.
,
Ouyang
,
L.
,
Ding
,
H.
,
Zhang
,
T.
,
Zhang
,
K.
,
Cheng
,
S.
, and
Sun
,
W.
,
2014
, “
Three-Dimensional Printing of Hela Cells for Cervical Tumor Model In Vitro
,”
Biofabrication
,
6
(
3
), p.
035001
. 10.1088/1758-5082/6/3/035001
179.
Pang
,
Y.
,
Mao
,
S. S.
,
Yao
,
R.
,
He
,
J. Y.
,
Zhou
,
Z. Z.
,
Feng
,
L.
,
Zhang
,
K. T.
,
Cheng
,
S. J.
, and
Sun
,
W.
,
2018
, “
TGF-β Induced Epithelial–Mesenchymal Transition in an Advanced Cervical Tumor Model by 3D Printing
,”
Biofabrication
,
10
(
4
), p.
044102
. 10.1088/1758-5090/aadbde
180.
Swaminathan
,
S.
,
Hamid
,
Q.
,
Sun
,
W.
, and
Clyne
,
A. M.
,
2019
, “
Bioprinting of 3D Breast Epithelial Spheroids for Human Cancer Models
,”
Biofabrication
,
11
(
2
), p.
025003
. 10.1088/1758-5090/aafc49
181.
Entezari
,
K.
,
Hoffmann
,
P.
,
Goris
,
M.
,
Peltier
,
A.
, and
Van Velthoven
,
R.
,
2007
, “
A Review of Currently Available Vessel Sealing Systems
,”
Minim. Invasive Ther. Allied Technol.
,
16
(
1
), pp.
52
57
. 10.1080/13645700601181414
182.
Arya
,
S.
,
Hadjievangelou
,
N.
,
Lei
,
S.
,
Kudo
,
H.
,
Goldin
,
R. D.
,
Darzi
,
A. W.
,
Elson
,
D. S.
, and
Hanna
,
G. B.
,
2013
, “
Radiofrequency-Induced Small Bowel Thermofusion: An Ex Vivo Study of Intestinal Seal Adequacy Using Mechanical and Imaging Modalities
,”
Surg. Endosc.
,
27
(
9
), pp.
3485
3496
. 10.1007/s00464-013-2935-2
183.
Gomes
,
D. F.
,
Galvão
,
I.
, and
Loja
,
M. A. R.
,
2019
, “
Overview on the Evolution of Laser Welding of Vascular and Nervous Tissues
,”
Appl. Sci.
,
9
(
10
), p.
2157
. 10.3390/app9102157
184.
Carbonell
,
A. M.
,
Joels
,
C. S.
,
Kercher
,
K. W.
,
Matthews
,
B. D.
,
Sing
,
R. F.
, and
Heniford
,
B. T.
,
2003
, “
A Comparison of Laparoscopic Bipolar Vessel Sealing Devices in the Hemostasis of Small-, Medium-, and Large-Sized Arteries
,”
J. Laparoendosc. Adv. Surg. Tech.
,
13
(
6
), pp.
377
380
. 10.1089/109264203322656441
185.
Newcomb
,
W. L.
,
Hope
,
W. W.
,
Schmelzer
,
T. M.
,
Heath
,
J. J.
,
Norton
,
H. J.
,
Lincourt
,
A. E.
,
Heniford
,
B. T.
, and
Iannitti
,
D. A.
,
2009
, “
Comparison of Blood Vessel Sealing among New Electrosurgical and Ultrasonic Devices
,”
Surg. Endosc.
,
23
(
1
), pp.
90
96
. 10.1007/s00464-008-9932-x
186.
Kramer
,
E. A.
, and
Rentschler
,
M. E.
,
2018
, “
Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery
,”
Annu. Rev. Biomed. Eng.
,
20
(
1
), pp.
1
20
. 10.1146/annurev-bioeng-071516-044702
187.
Pappas
,
J.
,
Roweton
,
S.
,
Kurtenbach
,
J.
, and
Dunne
,
J. B.
,
2017
, “
Comprehensive Analysis of Performance Data for Energized Vessel Sealing Devices
,”
J. Test. Eval.
,
45
(
5
), p.
20160216
. 10.1520/JTE20160216
188.
Koch
,
C.
,
Friedrich
,
T.
,
Metternich
,
F.
,
Tannapfel
,
A.
,
Reimann
,
H.-P.
, and
Eichfeld
,
U.
,
2003
, “
Determination of Temperature Elevation in Tissue During the Application of the Harmonic Scalpel
,”
Ultrasound Med. Biol.
,
29
(
2
), pp.
301
309
. 10.1016/S0301-5629(02)00727-5
189.
Sutton
,
P. A.
,
Awad
,
S.
,
Perkins
,
A. C.
, and
Lobo
,
D. N.
,
2010
, “
Comparison of Lateral Thermal Spread Using Monopolar and Bipolar Diathermy, the Harmonic Scalpel TM and the Ligasure TM
,”
Br. J. Surg.
,
97
(
3
), pp.
428
433
. 10.1002/bjs.6901
190.
Wallwiener
,
C. W.
,
Rajab
,
T. K.
,
Zubke
,
W.
,
Isaacson
,
K. B.
,
Enderle
,
M.
,
Schäller
,
D.
, and
Wallwiener
,
M.
,
2008
, “
Thermal Conduction, Compression, and Electrical Current—An Evaluation of Major Parameters of Electrosurgical Vessel Sealing in a Porcine in Vitro Model
,”
J. Minim. Invasive Gynecol.
,
15
(
5
), pp.
605
610
. 10.1016/j.jmig.2008.05.003
191.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Geiger
,
J. D.
, and
Shih
,
A. J.
,
2014
, “
Bipolar Electrosurgical Vessel-Sealing Device With Compressive Force Monitoring
,”
ASME J. Biomech. Eng.
,
136
(
6
), p.
061001
. 10.1115/1.4027269
192.
Anderson
,
N. S.
,
Kramer
,
E. A.
,
Cezo
,
J. D.
,
Ferguson
,
V. L.
, and
Rentschler
,
M. E.
,
2015
, “
Bond Strength of Thermally Fused Vascular Tissue Varies With Apposition Force
,”
ASME J. Biomech. Eng.
,
137
(
12
), p.
121010
. 10.1115/1.4031891
193.
Li
,
X.
,
Borduin
,
R.
,
Chen
,
R. K.
, and
Li
,
W.
,
2017
, “
The Effect of Compression Force Uniformity on Bipolar Tissue Welding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
054501
. 10.1115/1.4035492
194.
Karaki
,
W.
,
Akyildiz
,
A.
,
De
,
S.
, and
Borca-Tasciuc
,
D. A.
,
2017
, “
Energy Dissipation in Ex Vivo Porcine Liver During Electrosurgery
,”
IEEE Trans. Biomed. Eng.
,
64
(
6
), pp.
1211
1217
. 10.1109/TBME.2016.2595525
195.
Dilley
,
A. V.
,
Friend
,
M.-A. G.
, and
Morris
,
D. L.
,
1995
, “
An Experimental Study of Optimal Parameters for Bipolar Electrocoagulation
,”
Gastrointest. Endosc.
,
42
(
1
), pp.
27
30
. 10.1016/S0016-5107(95)70238-5
196.
Yang
,
C.-H.
,
Amer
,
M.
,
Li
,
W.
, and
Chen
,
R. K.
,
2019
, “
A New Concept of Electrosurgical Tissue Joining Process Using Sequential Compression for Minimal Thermal Damage
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14, p. V001T05A007; 8 pages.
10.1115/MSEC2019-2946
197.
Yang
,
C.-H.
,
Li
,
W.
, and
Chen
,
R. K.
,
2019
, “
Characterization of the Electrosurgical Tissue Joining Process Using Dynamic Impedance and Energy Efficiency
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
054502
. 10.1115/1.4043267
198.
Li
,
X.
,
Chen
,
R.
, and
Li
,
W.
,
2018
, “
An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061016
. 10.1115/1.4039493
199.
Zhao
,
L.
,
Zhou
,
Y.
,
Song
,
C.
,
Wang
,
Z.
, and
Cuschieri
,
A.
,
2017
, “
Predicting Burst Pressure of Radiofrequency-Induced Colorectal Anastomosis by Bio-Impedance Measurement
,”
Physiol. Meas.
,
38
(
3
), pp.
489
500
. 10.1088/1361-6579/38/3/489
200.
Kim
,
F. J.
,
Chammas
,
M. F.
,
Gewehr
,
E.
,
Morihisa
,
M.
,
Caldas
,
F.
,
Hayacibara
,
E.
,
Baptistussi
,
M.
,
Meyer
,
F.
, and
Martins
,
A. C.
,
2008
, “
Temperature Safety Profile of Laparoscopic Devices: Harmonic ACE (ACE), Ligasure V (LV), and Plasma Trisector (PT)
,”
Surg. Endosc.
,
22
(
6
), pp.
1464
1469
. 10.1007/s00464-007-9650-9
201.
Lin
,
S.
,
Fichera
,
L.
,
Fulton
,
M. J.
, and
Webster III
,
R. J.
,
2017
, “
Don’t Get Burned: Thermal Monitoring of Vessel Sealing Using a Miniature Infrared Camera
,”
Proceedings of SPIE 10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, 101350Y
Mar. 3.
10.1117/12.2256031
202.
Chen
,
R. K.
,
Chastagner
,
M. W.
,
Dodde
,
R. E.
, and
Shih
,
A. J.
,
2013
, “
Electrosurgical Vessel Sealing Tissue Temperature: Experimental Measurement and Finite Element Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
453
460
. 10.1109/TBME.2012.2228265
203.
Wagenpfeil
,
J.
,
Nold
,
B.
,
Fischer
,
K.
,
Neugebauer
,
A.
,
Rothmund
,
R.
,
Krämer
,
B.
,
Brucker
,
S.
,
Mischinger
,
J.
,
Schwentner
,
C.
,
Schenk
,
M.
,
Wallwiener
,
D.
,
Stenzl
,
A.
,
Enderle
,
M.
,
Sawodny
,
O.
, and
Ederer
,
M.
,
2014
, “
A Mathematical Model of Bipolar Radiofrequency-Induced Thermofusion
,”
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
,
Aug. 26–30
, pp.
5683
5686
.
204.
Fankell
,
D. P.
,
Kramer
,
E.
,
Cezo
,
J.
,
Taylor
,
K. D.
,
Ferguson
,
V. L.
, and
Rentschler
,
M. E.
,
2016
, “
A Novel Parameter for Predicting Arterial Fusion and Cutting in Finite Element Models
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3295
3306
. 10.1007/s10439-016-1588-4
205.
Karaki
,
W.
,
Rahul
,
Lopez
,
C. A.
,
Borca-Tasciuc
,
D.-A.
, and
De
,
S.
,
2017
, “
A Two-Scale Model of Radio-Frequency Electrosurgical Tissue Ablation
,”
Comput. Mech.
,
62
, pp.
1
12
. 10.1007/s00466-017-1529-6
206.
Fankell
,
D. P.
,
Regueiro
,
R. A.
,
Kramer
,
E. A.
,
Ferguson
,
V. L.
, and
Rentschler
,
M. E.
,
2018
, “
A Small Deformation Thermoporomechanics Finite Element Model and Its Application to Arterial Tissue Fusion
,”
ASME J. Biomech. Eng.
,
140
(
3
), p.
031007
. 10.1115/1.4037950
207.
Han
,
Z.
,
Rahul
, and
De
,
S.
,
2018
, “
A Multiphysics Model for Radiofrequency Activation of Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
,
337
, pp.
527
548
. 10.1016/j.cma.2018.04.005
208.
Karaki
,
W.
,
Rahul
,
Lopez
,
C. A.
,
Borca-Tasciuc
,
D.-A.
, and
De
,
S.
,
2018
, “
A Continuum Thermomechanical Model of In Vivo Electrosurgical Heating of Hydrated Soft Biological Tissues
,”
Int. J. Heat Mass Transf.
,
127
, pp.
961
974
. 10.1016/j.ijheatmasstransfer.2018.07.006
209.
Watanabe
,
H.
,
Kobayashi
,
Y.
, and
Fujie
,
M. G.
,
2008
, “
Modeling the Temperature Dependence of Thermal Conductivity: Developing a System for Robot-Assisted RFA Therapy
,”
2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
483
488
.
210.
Haemmerich
,
D.
,
Santos
,
I. d.
,
Schutt
,
D. J.
,
Webster
,
J. G.
, and
Mahvi
,
D. M.
,
2006
, “
In Vitro Measurements of Temperature-Dependent Specific Heat of Liver Tissue
,”
Med. Eng. Phys.
,
28
(
2
), pp.
194
197
. 10.1016/j.medengphy.2005.04.020
211.
Brace
,
C. L.
,
2008
, “
Temperature-Dependent Dielectric Properties of Liver Tissue Measured During Thermal Ablation: Toward an Improved Numerical Model
,”
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Vancouver, BC, Canada
,
Aug. 20–25
, pp.
230
233
.
212.
Chastagner
,
M. W.
,
Dodde
,
R. E.
,
Shih
,
A. J.
,
Li
,
W.
, and
Chen
,
R. K.
,
2016
, “
Measurement and Modeling of Tissue Thermal Conductivity With Variable Water Content and Compression
,”
J. Heat Transf.
,
138
(
7
), p.
074503
. 10.1115/1.4033078
213.
Yang
,
C. H.
,
Li
,
W.
, and
Chen
,
R. K.
,
2018
, “
Characterization and Modeling of Tissue Thermal Conductivity During an Electrosurgical Joining Process
,”
IEEE Trans. Biomed. Eng.
,
65
(
2
), pp.
365
370
. 10.1109/TBME.2017.2770095
214.
Kramer
,
E. A.
,
Cezo
,
J. D.
,
Fankell
,
D. P.
,
Taylor
,
K. D.
,
Rentschler
,
M. E.
, and
Ferguson
,
V. L.
,
2016
, “
Strength and Persistence of Energy-Based Vessel Seals Rely on Tissue Water and Glycosaminoglycan Content
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3421
3431
. 10.1007/s10439-016-1657-8
215.
Zhao
,
L.
,
Zhuo
,
C.
,
Song
,
C.
,
Li
,
X.
,
Zhou
,
Y.
, and
Shi
,
D.
,
2015
, “
Histological Characteristics of Collagen Denaturation and Injuries in Bipolar Radiofrequency-Induced Colonic Anastomoses
,”
Pathol. Res. Pract.
,
211
(
3
), pp.
214
218
. 10.1016/j.prp.2014.10.010
216.
Guo
,
C.
,
Shi
,
Z.
,
Mullany
,
B.
,
Linke
,
B.
,
Yamaguchi
,
H.
,
Chaudhari
,
R.
,
Hucker
,
S.
, and
Shih
,
A. J.
, “
Recent Advances in Abrasive Machining of Aerospace Alloys
,”
ASME J. Manuf. Sci. Eng.
(submitted). https://doi.org/10.1115/1.4047353
217.
Pandey
,
R. K.
, and
Panda
,
S. S.
,
2013
, “
Drilling of Bone: A Comprehensive Review
,”
J. Clin. Orthop. Trauma
,
4
(
1
), pp.
15
30
. 10.1016/j.jcot.2013.01.002
218.
Tai
,
B. L.
,
Palmisano
,
A. C.
,
Belmont
,
B.
,
Irwin
,
T. A.
,
Holmes
,
J.
, and
Shih
,
A. J.
,
2015
, “
Numerical Evaluation of Sequential Bone Drilling Strategies Based on Thermal Damage
,”
Med. Eng. Phys.
,
37
(
9
), pp.
855
861
. 10.1016/j.medengphy.2015.06.002
219.
Palmisano
,
A. C.
,
Tai
,
B. L.
,
Belmont
,
B.
,
Irwin
,
T. A.
,
Shih
,
A.
, and
Holmes
,
J. R.
,
2015
, “
Comparison of Cortical Bone Drilling Induced Heat Production among Common Drilling Tools
,”
J. Orthop. Trauma
,
29
(
5
), pp.
e188
193
. 10.1097/BOT.0000000000000240
220.
Luo
,
Y.
,
Chen
,
L.
, and
Shih
,
A. J.
,
2019
, “
Hollow Notched K-Wires for Bone Drilling With Through-Tool Cooling
,”
J. Orthop. Res.
,
37
(
11
), pp.
2297
2306
. 10.1002/jor.24419
221.
Alam
,
K.
,
Al-Ghaithi
,
A.
,
Piya
,
S.
, and
Saleem
,
A.
,
2019
, “
In-Vitro Experimental Study of Histopathology of Bone in Vibrational Drilling
,”
Med. Eng. Phys.
,
67
, pp.
78
87
. 10.1016/j.medengphy.2019.03.013
222.
Davidson
,
S. R.
, and
James
,
D. F.
,
2003
, “
Drilling in Bone: Modeling Heat Generation and Temperature Distribution
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
305
314
. 10.1115/1.1535190
223.
Lee
,
J.
,
Rabin
,
Y.
, and
Ozdoganlar
,
O. B.
,
2011
, “
A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1234
1244
. 10.1016/j.medengphy.2011.05.014
224.
Lee
,
J.
,
Ozdoganlar
,
O. B.
, and
Rabin
,
Y.
,
2012
, “
An Experimental Investigation on Thermal Exposure During Bone Drilling
,”
Med. Eng. Phys.
,
34
(
10
), pp.
1510
1520
. 10.1016/j.medengphy.2012.03.002
225.
Tai
,
B. L.
,
Kao
,
Y.-T.
,
Payne
,
N.
,
Zheng
,
Y.
,
Chen
,
L.
, and
Shih
,
A. J.
,
2018
, “
3D Printed Composite for Simulating Thermal and Mechanical Responses of the Cortical Bone in Orthopaedic Surgery
,”
Med. Eng. Phys.
,
61
, pp.
61
68
. 10.1016/j.medengphy.2018.08.004
226.
Takabi
,
B.
, and
Tai
,
B. L.
,
2017
, “
A Review of Cutting Mechanics and Modeling Techniques for Biological Materials
,”
Med. Eng. Phys.
,
45
, pp.
1
14
. 10.1016/j.medengphy.2017.04.004
227.
Santiuste
,
C.
,
Rodríguez-Millán
,
M.
,
Giner
,
E.
, and
Miguélez
,
H.
,
2014
, “
The Influence of Anisotropy in Numerical Modeling of Orthogonal Cutting of Cortical Bone
,”
Compos. Struct.
,
116
, pp.
423
431
. 10.1016/j.compstruct.2014.05.031
228.
Takabi
,
B.
, and
Tai
,
B. L.
,
2019
, “
Finite Element Modeling of Orthogonal Machining of Brittle Materials Using an Embedded Cohesive Element Mesh
,”
J. Manuf. Mater. Process.
,
3
(
2
), p.
36
. 10.3390/jmmp3020036
229.
Lee
,
J.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Modeling and Experimentation of Bone Drilling Forces
,”
J. Biomech.
,
45
(
6
), pp.
1076
1083
. 10.1016/j.jbiomech.2011.12.012
230.
Wang
,
Y.
,
Li
,
W.
,
Han
,
P.
,
Giovannini
,
M.
,
Ehmann
,
K.
, and
Shih
,
A. J.
,
2016
, “
Contributions Inmedical Needle Technologies—Geometry, Mechanics, Design, and Manufacturing
,”
Mach. Sci. Technol.
,
20
(
1
), pp.
1
43
. 10.1080/10910344.2015.1133917
231.
Parker
,
M.
,
1915
, “
Knife with Detachable-Blade
,” U.S. Patent US3201869.
232.
Wetlab
,
2018
, “
Types of Surgical Scalpel Blades and Their Function
.”
233.
Spaeth
,
G.
,
Danesh-Meyer
,
H.
,
Goldberg
,
I.
, and
Kampik
,
A.
,
2011
,
Ophthalmic Surgery: Principles and Practice
,
Saunders
.
234.
Hartman
,
C.
, and
Kavoussi
,
L.
,
2017
,
Handbook of Surgical Technique E-Book: A True Surgeon’s Guide to Navigating the Operating Room
,
Elsevier
.
235.
Wang
,
Y.
,
Chen
,
R. K.
,
Tai
,
B. L.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2014
, “
Optimal Needle Design for Minimal Insertion Force and Bevel Length
,”
Med. Eng. Phys.
,
36
(
9
), pp.
1093
1100
. 10.1016/j.medengphy.2014.05.013
236.
Itakura
,
T.
,
2014
,
Deep Brain Stimulation for Neurological Disorders: Theoretical Background and Clinical Application
,
Springer
,
New York
.
237.
Khilwani
,
R.
,
Gilgunn
,
P. J.
,
Kozai
,
T. D. Y.
,
Ong
,
X. C.
,
Korkmaz
,
E.
,
Gunalan
,
P. K.
,
Cui
,
X. T.
,
Fedder
,
G. K.
, and
Ozdoganlar
,
O. B.
,
2016
, “
Ultra-Miniature Ultra-Compliant Neural Probes With Dissolvable Delivery Needles: Design, Fabrication and Characterization
,”
Biomed. Microdevices
,
18
(
6
), p.
97
. 10.1007/s10544-016-0125-4
238.
Kozai
,
T. D. Y.
,
Gugel
,
Z.
,
Li
,
X.
,
Gilgunn
,
P. J.
,
Khilwani
,
R.
,
Ozdoganlar
,
O. B.
,
Fedder
,
G. K.
,
Weber
,
D. J.
, and
Cui
,
X. T.
,
2014
, “
Chronic Tissue Response to Carboxymethyl Cellulose Based Dissolvable Insertion Needle for Ultra-Small Neural Probes
,”
Biomaterials
,
35
(
34
), pp.
9255
9268
. 10.1016/j.biomaterials.2014.07.039
239.
Chen
,
L.
,
Yeh
,
J.
,
Watson
,
B.
, and
Shih
,
A.
,
2019
, “
High-Resolution Force Measurement for In-Vivo Microwire Insertion Into Rat Brain
,”
IEEE Trans. Biomed. Eng.
(submitted).
240.
Chen
,
L.
,
Hartner
,
J.
,
Van Dyke
,
D.
,
Dong
,
T.
,
Li
,
D.
,
Watson
,
B.
, and
Shih
,
A.
,
2019
, “
Custom Skull Cap With Precision Guides for Deep Insertion of Cellular-Scale Microwire Into Rat Brain
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14, p. V001T05A009; 7 pages.
10.1115/MSEC2019-2967
241.
Badi
,
A. N.
,
Hillman
,
T.
,
Shelton
,
C.
, and
Normann
,
R. A.
,
2002
, “
A Technique for Implantation of a 3-Dimensional Penetrating Electrode Array in the Modiolar Nerve of Cats and Humans
,”
Arch. Otolaryngol. Head Neck Surg.
,
128
(
9
), pp.
1019
1025
. 10.1001/archotol.128.9.1019
242.
Moore
,
J. Z. J. Z.
,
Shih
,
A. J. A. J.
,
McLaughlin
,
P. W. P. W.
,
McGill
,
C. S. S.
,
Zhang
,
Q. H. H.
,
Zheng
,
H. J. J.
, and
Shih
,
A. J. A. J.
,
2009
, “
Blade Oblique Cutting of Tissue for Investigation of Biopsy Needle Insertion
,”
Trans. North Am. Manuf. Res. Inst. SME
,
37
, pp.
49
56
.
243.
Moore
,
J. Z.
,
Zhang
,
Q.
,
McGill
,
C. S.
,
Zheng
,
H.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2010
, “
Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy
,”
ASME J. Manuf. Sci. Eng.
,
132
(
5
), p.
051005
. 10.1115/1.4002190
244.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann.
,
60
(
1
), pp.
157
160
. 10.1016/j.cirp.2011.03.101
245.
Han
,
P.
, and
Ehmann
,
K.
,
2013
, “
Study of the Effect of Cannula Rotation on Tissue Cutting for Needle Biopsy
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1584
1590
. 10.1016/j.medengphy.2013.05.001
246.
Han
,
P.
,
Che
,
D.
,
Pallav
,
K.
, and
Ehmann
,
K.
,
2012
, “
Models of the Cutting Edge Geometry of Medical Needles With Applications to Needle Design
,”
Int. J. Mech. Sci.
,
65
(
1
), pp.
157
167
. 10.1016/j.ijmecsci.2012.09.014
247.
Shetty
,
P. P.
,
Hatton
,
R. W.
,
Barnett
,
A. C.
,
Homich
,
A. J.
, and
Moore
,
J. Z.
,
2017
, “
Modeling the Cutting Edge Geometry of Scalpel Blades
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
1
), pp.
65
72
. 10.1177/0954405414567928
248.
Tai
,
B. L.
,
Wang
,
Y.
, and
Shih
,
A. J.
,
2013
, “
Cutting Force of Hollow Needle Insertion in Soft Tissue
,”
ASME 2013 International Manufacturing Science and Engineering Conference
,
Madison, WI
,
June 10–14
, p.
V001T01A007
.
249.
Obaid
,
A. M.
,
Wu
,
Y. W.
,
Hanna
,
M.
,
Nix
,
W.
,
Ding
,
J.
, and
Melosh
,
N.
,
2018
, “
Ultra-Sensitive Measurement of Brain Penetration with Microscale Probes for Brain Machine Interface Considerations
,”
bioRxiv
, p.
454520
. 10.1101/454520
250.
Mahvash
,
M.
,
Voo
,
L. M.
,
Kim
,
D.
,
Jeung
,
K.
,
Wainer
,
J.
, and
Okamura
,
A. M.
,
2008
, “
Modeling the Forces of Cutting With Scissors
,”
IEEE Trans. Biomed. Eng.
,
55
(
3
), pp.
848
856
. 10.1109/TBME.2007.908069
251.
Moore
,
J. Z.
,
McLaughlin
,
P. W.
, and
Shih
,
A. J.
,
2012
, “
Novel Needle Cutting Edge Geometry for End-Cut Biopsy
,”
Med. Phys.
,
39
(
1
), pp.
99
108
. 10.1118/1.3665253
252.
Wang
,
Y.
,
Tai
,
B. L.
,
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
The Needle With Lancet Point: Geometry for Needle Tip Grinding and Tissue Insertion Force
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041010
. 10.1115/1.4023718
253.
Benjamin
,
E. J.
,
Virani
,
S. S.
,
Callaway
,
C. W.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Delling
,
F. N.
,
Deo
,
R.
,
de Ferranti
,
S. D.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Lutsey
,
P. L.
,
Matchar
,
D. B.
,
Matsushita
,
K.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
O’Flaherty
,
M.
,
Palaniappan
,
L. P.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Ritchey
,
M. D.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sampson
,
U. K. A.
,
Satou
,
G. M.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H. Y.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
,
2018
, “
Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association
,”
Circulation
,
137
(
12
), pp.
e67
e492
. 10.1161/CIR.0000000000000558
254.
Beckman
,
M. G.
,
Hooper
,
W. C.
,
Critchley
,
S. E.
, and
Ortel
,
T. L.
,
2010
, “
Venous Thromboembolism: A Public Health Concern
,”
Am. J. Prev. Med.
,
38
(
4 suppl
), pp.
S495
S501
. 10.1016/j.amepre.2009.12.017
255.
Palaniswami
,
M.
, and
Yan
,
B.
,
2015
, “
Mechanical Thrombectomy Is Now the Gold Standard for Acute Ischemic Stroke: Implications for Routine Clinical Practice
,”
Interv. Neurol.
,
4
(
1–2
), pp.
18
29
. 10.1159/000438774
256.
Mctaggart
,
R. A.
,
Tung
,
E. L.
,
Yaghi
,
S.
,
Cutting
,
S. M.
,
Hemendinger
,
M.
,
Gale
,
H. I.
,
Baird
,
G. L.
,
Haas
,
R. A.
, and
Jayaraman
,
M. V.
,
2017
, “
Continuous Aspiration Prior to Intracranial Vascular Embolectomy (CAPTIVE): A Technique Which Improves Outcomes
,”
J. Neurointerventional Surg.
,
9
(
12
), pp.
1154
1159
. 10.1136/neurintsurg-2016-012838
257.
Albers
,
G. W.
,
Marks
,
M. P.
,
Kemp
,
S.
,
Christensen
,
S.
,
Tsai
,
J. P.
,
Ortega-Gutierrez
,
S.
,
McTaggart
,
R. A.
,
Torbey
,
M. T.
,
Kim-Tenser
,
M.
,
Leslie-Mazwi
,
T.
,
Sarraj
,
A.
,
Kasner
,
S. E.
,
Ansari
,
S. A.
,
Yeatts
,
S. D.
,
Hamilton
,
S.
,
Mlynash
,
M.
,
Heit
,
J. J.
,
Zaharchuk
,
G.
,
Kim
,
S.
,
Carrozzella
,
J.
,
Palesch
,
Y. Y.
,
Demchuk
,
A. M.
,
Bammer
,
R.
,
Lavori
,
P. W.
,
Broderick
,
J. P.
, and
Lansberg
,
M. G.
,
2018
, “
Thrombectomy for Stroke at 6 to 16 Hours With Selection by Perfusion Imaging
,”
N. Engl. J. Med.
,
378
(
8
), pp.
708
718
. 10.1056/NEJMoa1713973
258.
Campbell
,
B. C. V.
,
Mitchell
,
P. J.
,
Kleinig
,
T. J.
,
Dewey
,
H. M.
,
Churilov
,
L.
,
Yassi
,
N.
,
Yan
,
B.
,
Dowling
,
R. J.
,
Parsons
,
M. W.
,
Oxley
,
T. J.
,
Wu
,
T. Y.
,
Brooks
,
M.
,
Simpson
,
M. A.
,
Miteff
,
F.
,
Levi
,
C. R.
,
Krause
,
M.
,
Harrington
,
T. J.
,
Faulder
,
K. C.
,
Steinfort
,
B. S.
,
Priglinger
,
M.
,
Ang
,
T.
,
Scroop
,
R.
,
Barber
,
P. A.
,
McGuinness
,
B.
,
Wijeratne
,
T.
,
Phan
,
T. G.
,
Chong
,
W.
,
Chandra
,
R. V.
,
Bladin
,
C. F.
,
Badve
,
M.
,
Rice
,
H.
,
de Villiers
,
L.
,
Ma
,
H.
,
Desmond
,
P. M.
,
Donnan
,
G. A.
, and
Davis
,
S. M.
,
2015
, “
Endovascular Therapy for Ischemic Stroke With Perfusion-Imaging Selection
,”
N. Engl. J. Med.
,
372
(
11
), pp.
1009
1018
. 10.1056/NEJMoa1414792
259.
Auth
,
D. C.
,
Clement
,
T. J.
, and
Gordon
,
L. S.
,
1997
, “
Transluminal Thrombectomy Apparatus
,” U.S. Patent US5695507.
260.
Liu
,
Y.
, Reddy, A. S.,
Cockrum
,
J.
,
Ajulufoh
,
M. C.
,
Zheng
,
Y.
,
Shih
,
A. J.
,
Pandey
,
A. S.
, and
Savastano
,
L. E.
,
2020
, “
Standardized Fabrication Method of Human-Derived Emboli with Histologic and Mechanical Quantification for Stroke Research
,”
J. Stroke Cerebrovasc.
,
29
(
11
), p.
105205
. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105205
261.
Liu
,
Y.
,
Zheng
,
Y.
,
Reddy
,
A. S.
,
Gebrezgiabhier
,
D.
,
Davis
,
E.
,
Cockrum
,
J.
,
Gemmete
,
J. J.
,
Chaudhary
,
N.
,
Griauzde
,
J.
,
Pandey
,
A. S.
,
Shih
,
A. J.
, and
Savastano
,
L. E.
,
2019
, “
Analysis of Human Emboli and Thrombectomy Forces in Large Vessel Occlusion Stroke
,”
J. Neurosurg.
(
accepted
). 10.3171/2019.12.jns192187
262.
Johnson
,
S.
,
Duffy
,
S.
,
Gunning
,
G.
,
Gilvarry
,
M.
,
McGarry
,
J. P.
, and
McHugh
,
P. E.
,
2017
, “
Review of Mechanical Testing and Modelling of Thrombus Material for Vascular Implant and Device Design
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2494
2508
. 10.1007/s10439-017-1906-5
263.
Liu
,
Y.
,
Zheng
,
Y.
,
Li
,
A. D. R.
,
Liu
,
Y.
,
Savastano
,
L. E.
, and
Shih
,
A. J.
,
2019
, “
Cutting of Blood Clots—Experiment and Smooth Particle Galerkin Modelling
,”
CIRP Ann.
,
68
(
1
), pp.
97
100
. 10.1016/j.cirp.2019.04.025
264.
Samuel
,
J.
,
Jun
,
M.
,
Ozdoganlar
,
O. B.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two Decade State-of-the-Field Review
,”
ASME J. Manuf. Sci. Eng.
(
in press
). 10.1115/1.4047621
265.
Prausnitz
,
M. R.
, and
Langer
,
R.
,
2008
, “
Transdermal Drug Delivery
,”
Nat. Biotechnol.
,
26
(
11
), pp.
1261
1268
. 10.1038/nbt.1504
266.
Donnelly
,
R. F.
,
Singh
,
T. R. R.
, and
Woolfson
,
A. D.
,
2010
, “
Microneedle-Based Drug Delivery Systems: Microfabrication, Drug Delivery, and Safety
,”
Drug Deliv.
,
17
(
4
), pp.
187
207
. 10.3109/10717541003667798
267.
Gill
,
H. S.
,
Denson
,
D. D.
,
Burris
,
B. A.
, and
Prausnitz
,
M. R.
,
2008
, “
Effect of Microneedle Design on Pain in Human Subjects
,”
Clin. J. Pain
,
24
(
7
), pp.
585
594
. 10.1097/AJP.0b013e31816778f9
268.
Ma
,
G.
, and
Wu
,
C.
,
2017
, “
Microneedle, Bio-Microneedle and Bio-Inspired Microneedle: A Review
,”
J. Controlled Release
,
251
, pp.
11
23
. 10.1016/j.jconrel.2017.02.011
269.
Bediz
,
B.
,
Korkmaz
,
E.
,
Khilwani
,
R.
,
Donahue
,
C.
,
Erdos
,
G.
,
Falo
,
L. D.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dissolvable Microneedle Arrays for Intradermal Delivery of Biologics: Fabrication and Application
,”
Pharm. Res.
,
31
(
1
), pp.
117
135
. 10.1007/s11095-013-1137-x
270.
Wang
,
M.
,
Hu
,
L.
, and
Xu
,
C.
,
2017
, “
Recent Advances in the Design of Polymeric Microneedles for Transdermal Drug Delivery and Biosensing
,”
Lab. Chip
,
17
(
8
), pp.
1373
1387
. 10.1039/C7LC00016B
271.
Lee
,
J. W.
,
Park
,
J.-H.
, and
Prausnitz
,
M. R.
,
2008
, “
Dissolving Microneedles for Transdermal Drug Delivery
,”
Biomaterials
,
29
(
13
), pp.
2113
2124
. 10.1016/j.biomaterials.2007.12.048
272.
Gill
,
H. S.
, and
Prausnitz
,
M. R.
,
2007
, “
Coated Microneedles for Transdermal Delivery
,”
J. Controlled Release
,
117
(
2
), pp.
227
237
. 10.1016/j.jconrel.2006.10.017
273.
Patricia Pissinato Pere
,
C.
,
Economidou
,
S. N.
,
Lall
,
G.
,
Ziraud
,
C.
,
Boateng
,
J. S.
,
Alexander
,
B. D.
,
Lamprou
,
D. A.
, and
Douroumis
,
D.
,
2018
, “
3D Printed Microneedles for Insulin Skin Delivery
,”
Int. J. Pharm.
,
544
(
2
), pp.
425
432
. 10.1016/j.ijpharm.2018.03.031
274.
Filiz
,
S.
,
Conley
,
C. M.
,
Wasserman
,
M. B.
, and
Ozdoganlar
,
O. B.
,
2007
, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
,
47
(
7
), pp.
1088
1100
. 10.1016/j.ijmachtools.2006.09.024
275.
Filiz
,
S.
,
Xie
,
L.
,
Weiss
,
L. E.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Micromilling of Microbarbs for Medical Implants
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
459
472
. 10.1016/j.ijmachtools.2007.08.020
276.
Korkmaz
,
E.
,
Friedrich
,
E. E.
,
Ramadan
,
M. H.
,
Erdos
,
G.
,
Mathers
,
A. R.
,
Burak Ozdoganlar
,
O.
,
Washburn
,
N. R.
, and
Falo
,
L. D.
,
2015
, “
Therapeutic Intradermal Delivery of Tumor Necrosis Factor-Alpha Antibodies Using Tip-Loaded Dissolvable Microneedle Arrays
,”
Acta Biomater.
,
24
, pp.
96
105
. 10.1016/j.actbio.2015.05.036
277.
Korkmaz
,
E.
,
Friedrich
,
E. E.
,
Ramadan
,
M. H.
,
Erdos
,
G.
,
Mathers
,
A. R.
,
Ozdoganlar
,
O. B.
,
Washburn
,
N. R.
, and
Falo
,
L. D.
,
2016
, “
Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha Into Human Skin
,”
J. Pharm. Sci.
,
105
(
11
), pp.
3453
3457
. 10.1016/j.xphs.2016.07.008
278.
Yalcintas
,
E. P.
,
Ackerman
,
D. S.
,
Korkmaz
,
E.
,
Jarvik
,
J. W.
,
Campbell
,
P. G.
,
Bruchez
,
M. P.
, and
Ozdoganlar
,
O. B.
, “
In Vitro Cytotoxicity of Carbohydrate-Based Dissolvable Materials for Microneedle Arrays
,”
Pharm. Res.
(
in press
). 10.1007/s11095-019-2748-7
279.
Lee
,
M.-Y.
,
Park
,
C. B.
,
Dordick
,
J. S.
, and
Clark
,
D. S.
,
2005
, “
Metabolizing Enzyme Toxicology Assay Chip (MetaChip) for High-Throughput Microscale Toxicity Analyses
,”
Proc. Natl. Acad. Sci. USA.
,
102
(
4
), pp.
983
987
. 10.1073/pnas.0406755102
280.
Abbott
,
A.
,
2003
, “
Biology’s New Dimension
,”
Nature
,
424
(
6951
), pp.
870
872
. 10.1038/424870a
281.
Cukierman
,
E.
,
Pankov
,
R.
,
Stevens
,
D. R.
, and
Yamada
,
K. M.
,
2001
, “
Taking Cell-Matrix Adhesions to the Third Dimension
,”
Sci. Wash.
,
294
(
5547
), pp.
1708
1712
. 10.1126/science.1064829
282.
Abidian
,
M. R.
,
Kim
,
D.-H.
, and
Martin
,
D. C.
,
2006
, “
Conducting-Polymer Nanotubes for Controlled Drug Release
,”
Adv. Mater.
,
18
(
4
), pp.
405
409
. 10.1002/adma.200501726
283.
Simovic
,
S.
,
Losic
,
D.
, and
Vasilev
,
K.
,
2010
, “
Controlled Drug Release From Porous Materials by Plasma Polymer Deposition
,”
Chem. Commun.
,
46
(
8
), pp.
1317
1319
. 10.1039/b919840g
284.
Rezwan
,
K.
,
Chen
,
Q. Z.
,
Blaker
,
J. J.
, and
Boccaccini
,
A. R.
,
2006
, “
Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
27
(
18
), pp.
3413
3431
. 10.1016/j.biomaterials.2006.01.039
285.
Khademhosseini
,
A.
,
Langer
,
R.
,
Borenstein
,
J.
, and
Vacanti
,
J. P.
,
2006
, “
Microscale Technologies for Tissue Engineering and Biology
,”
Proc. Natl. Acad. Sci. USA.
,
103
(
8
), pp.
2480
2487
. 10.1073/pnas.0507681102
286.
Mouthuy
,
P.-A.
,
Ye
,
H.
,
Triffitt
,
J.
,
Oommen
,
G.
, and
Cui
,
Z.
,
2010
, “
Physico-Chemical Characterization of Functional Electrospun Scaffolds for Bone and Cartilage Tissue Engineering
,”
Proc. Inst. Mech. Eng. [H]
,
224
(
12
), pp.
1401
1414
. 10.1243/09544119JEIM824
287.
Yu
,
J. Z.
,
Korkmaz
,
E.
,
Berg
,
M. I.
,
LeDuc
,
P. R.
, and
Ozdoganlar
,
O. B.
,
2017
, “
Biomimetic Scaffolds With Three-Dimensional Undulated Microtopographies
,”
Biomaterials
,
128
, pp.
109
120
. 10.1016/j.biomaterials.2017.02.014
288.
Mikos
,
A. G.
, and
Temenoff
,
J. S.
,
2000
, “
Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering
,”
Electron. J. Biotechnol.
,
3
(
2
), pp.
23
24
. 10.2225/vol3-issue2-fulltext-5
289.
Whang
,
K.
,
Thomas
,
C. H.
,
Healy
,
K. E.
, and
Nuber
,
G.
,
1995
, “
A Novel Method to Fabricate Bioabsorbable Scaffolds
,”
Polymer
,
36
(
4
), pp.
837
842
. 10.1016/0032-3861(95)93115-3
290.
Nam
,
Y. S.
, and
Park
,
T. G.
,
1999
, “
Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Method
,”
Biomaterials
,
20
(
19
), pp.
1783
1790
. 10.1016/S0142-9612(99)00073-3
291.
Mikos
,
A. G.
,
Sarakinos
,
G.
,
Leite
,
S. M.
,
Vacant
,
J. P.
, and
Langer
,
R.
,
1993
, “
Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering
,”
Biomaterials
,
14
(
5
), pp.
323
330
. 10.1016/0142-9612(93)90049-8
292.
Harris
,
L. D.
,
Kim
,
B.-S.
, and
Mooney
,
D. J.
,
1998
, “
Open Pore Biodegradable Matrices Formed With Gas Foaming
,”
J. Biomed. Mater. Res.
,
42
(
3
), pp.
396
402
. 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E
293.
Kumar
,
V.
, and
Suh
,
N. P.
,
1990
, “
A Process for Making Microcellular Thermoplastic Parts
,”
Polym. Eng. Sci.
,
30
(
20
), pp.
1323
1329
. 10.1002/pen.760302010
294.
Handa
,
Y. P.
, and
Zhang
,
Z.
,
2000
, “
A Novel Stress-Induced Nucleation and Foaming Process and Its Applications in Making Homogeneous Foams, Anisotropic Foams and Multilayered Foams
,”
Cell. Polym.
,
19
(
2
), pp.
77
91
.
295.
Wang
,
X.
,
Li
,
W.
, and
Kumar
,
V.
,
2006
, “
A Method for Solvent-Free Fabrication of Porous Polymer Using Solid-State Foaming and Ultrasound for Tissue Engineering Applications
,”
Biomaterials
,
27
(
9
), pp.
1924
1929
. 10.1016/j.biomaterials.2005.09.029
296.
Wang
,
H.
, and
Li
,
W.
,
2007
, “
A Novel 3D Porous Micromixer Fabricated Using Selective Ultrasonic Foaming
,”
J. Micromech. Microeng.
,
17
(
9
), pp.
1835
1842
. 10.1088/0960-1317/17/9/012
297.
Wang
,
H.
, and
Li
,
W.
,
2008
, “
Selective Ultrasonic Foaming of Polymer for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021004
. 10.1115/1.2823078
298.
Wang
,
X.
,
Li
,
W.
, and
Kumar
,
V.
,
2009
, “
Creating Open-Celled Solid-State Foams Using Ultrasound
,”
J. Cell. Plast.
,
45
(
4
), pp.
353
369
. 10.1177/0021955X09104282
299.
Zasedateleva
,
O. A.
,
Mikheikin
,
A. L.
,
Turygin
,
A. Y.
,
Prokopenko
,
D. V.
,
Chudinov
,
A. V.
,
Belobritskaya
,
E. E.
,
Chechetkin
,
V. R.
, and
Zasedatelev
,
A. S.
,
2008
, “
Gel-Based Oligonucleotide Microarray Approach to Analyze Protein–SsDNA Binding Specificity
,”
Nucleic Acids Res.
,
36
(
10
), pp.
e61
e61
. 10.1093/nar/gkn246
300.
Tanaka
,
H.
,
Hanasaki
,
M.
,
Isojima
,
T.
,
Takeuchi
,
H.
,
Shiroya
,
T.
, and
Kawaguchi
,
H.
,
2009
, “
Enhancement of Sensitivity of SPR Protein Microarray Using a Novel 3D Protein Immobilization
,”
Colloids Surf. B Biointerfaces
,
70
(
2
), pp.
259
265
. 10.1016/j.colsurfb.2008.12.037
301.
Stimpson
,
D. I.
,
Knepper
,
S. M.
,
Shida
,
M.
,
Obata
,
K.
, and
Tajima
,
H.
,
2004
, “
Three-Dimensional Microarray Platform Applied to Single Nucleotide Polymorphism Analysis
,”
Biotechnol. Bioeng.
,
87
(
1
), pp.
99
103
. 10.1002/bit.20087
302.
Angenendt
,
P.
,
Glökler
,
J.
,
Konthur
,
Z.
,
Lehrach
,
H.
, and
Cahill
,
D. J.
,
2003
, “
3D Protein Microarrays: Performing Multiplex Immunoassays on a Single Chip
,”
Anal. Chem.
,
75
(
17
), pp.
4368
4372
. 10.1021/ac034260l
303.
Ziauddin
,
J.
, and
Sabatini
,
D. M.
,
2001
, “
Microarrays of Cells Expressing Defined CDNAs
,”
Nature
,
411
(
6833
), pp.
107
110
. 10.1038/35075114
304.
Díaz-Mochón
,
J. J.
,
Tourniaire
,
G.
, and
Bradley
,
M.
,
2007
, “
Microarray Platforms for Enzymatic and Cell-Based Assays
,”
Chem. Soc. Rev.
,
36
(
3
), pp.
449
457
. 10.1039/B511848B
305.
Ock
,
J.
, and
Li
,
W.
,
2014
, “
Fabrication of a Three-Dimensional Tissue Model Microarray Using Laser Foaming of a Gas-Impregnated Biodegradable Polymer
,”
Biofabrication
,
6
(
2
), p.
024110
. 10.1088/1758-5082/6/2/024110
306.
Ock
,
J.
, and
Li
,
W.
,
2017
, “
Modeling and Simulation of a Selective Laser Foaming Process for Fabrication of Microliter Tissue Engineering Scaffolds
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111016
. 10.1115/1.4037425
307.
Ock
,
J.
, and
Li
,
W.
,
2020
, “
A High-Throughput Three-Dimensional Cell Culture Platform for Drug Screening
,”
J. Bio-Des. Manuf.
,
3
, pp.
40
47
. 10.1007/s42242-020-00061-z
You do not currently have access to this content.