Abstract

Despite the rapid growth and widespread recognition of additive manufacturing (AM) technologies, the geometrical inaccuracy of the manufactured products remains a challenging issue and effective prediction of the geometric deviations in AM is critical for the solution of this issue. The layerwise characteristic of the AM process has motivated the investigation of deviation from in-plane and out-of-plane perspectives, the latter has been seldom studied and will be the focus of this paper. In this paper, an out-of-plane deviation modeling method will be proposed based on statistical modal analysis. Owing to the inconvenience in data acquisition, AM simulation is conducted to obtain the layer-level out-of-plane deviation on parts manufactured by the selective laser melting process. Discrete cosine transform is adopted to identify the major deviation modes from the data. The statistical relationship between mode coefficients and related part and process parameters is studied based on the Gaussian process model. To gain data for model training, experimental design is conducted to sample parameter combinations as simulation input. A case study is presented to demonstrate the proposed method and the effectiveness is validated on test data. The method can be applied in multiple domains of AM, such as quality control and tolerancing, to provide high-fidelity prediction of geometric deviations.

References

1.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
. 10.1080/0740817X.2014.955599
2.
Jin
,
Y.
,
JoeQin
,
S.
, and
Huang
,
Q.
,
2016
, “
Offline Predictive Control of Out-of-Plane Shape Deformation for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121005
. 10.1115/1.4033444
3.
Raghunath
,
N.
, and
Pandey
,
P. M.
,
2007
, “
Improving Accuracy Through Shrinkage Modelling by Using Taguchi Method in Selective Laser Sintering
,”
Int. J. Mach. Tools. Manuf.
,
47
(
6
), pp.
985
995
. 10.1016/j.ijmachtools.2006.07.001
4.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P. V.
,
2009
, “
Influence of Building Strategies on the Accuracy of Parts in Selective Laser Sintering
,”
Mater. Des.
,
30
(
8
), pp.
2946
2954
. 10.1016/j.matdes.2009.01.009
5.
Senthilkumaran
,
K.
,
Pandey
,
P. M.
, and
Rao
,
P. V.
,
2012
, “
Statistical Modeling and Minimization of Form Error in SLS Prototyping
,”
Rapid Prototyping J.
,
18
(
1
), pp.
38
48
. 10.1108/13552541211193485
6.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
,
Chen
,
Y.
,
Sosina
,
S.
, and
Dasgupta
,
T.
,
2014
, “
Statistical Predictive Modeling and Compensation of Geometric Deviations of Three-Dimensional Printed Products
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061008
. 10.1115/1.4028510
7.
Huang
,
Q.
,
2016
, “
An Analytical Foundation for Optimal Compensation of Three-Dimensional Shape Deformation in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061010
. 10.1115/1.4032220
8.
Luan
,
H.
, and
Huang
,
Q.
,
2017
, “
Prescriptive Modeling and Compensation of in-plane Shape Deformation for 3-D Printed Freeform Products
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
73
82
. 10.1109/TASE.2016.2608955
9.
Luan
,
H.
,
Grasso
,
M.
,
Colosimo
,
B. M.
, and
Huang
,
Q.
,
2018
, “
Prescriptive Data-Analytical Modeling of Laser Powder Bed Fusion Processes for Accuracy Improvement
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011008
. 10.1115/1.4041709
10.
Cheng
,
L.
,
Tsung
,
F.
, and
Wang
,
A.
,
2017
, “
A Statistical Transfer Learning Perspective for Modeling Shape Deviations in Additive Manufacturing
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1988
1993
. 10.1109/LRA.2017.2713238
11.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2017
, “
Deviation Modeling and Shape Transformation in Design for Additive Manufacturing
,”
Procedia CIRP
,
60
, pp.
211
216
. 10.1016/j.procir.2017.01.023
12.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2018
, “
Shape Transformation Perspective for Geometric Deviation Modeling in Additive Manufacturing
,”
Procedia CIRP
,
75
, pp.
75
80
. 10.1016/j.procir.2018.04.038
13.
Zhu
,
Z.
,
Anwer
,
N.
,
Huang
,
Q.
, and
Mathieu
,
L.
,
2018
, “
Machine Learning in Tolerancing for Additive Manufacturing
,”
CIRP Ann.
,
67
(
1
), pp.
157
160
. 10.1016/j.cirp.2018.04.119
14.
Cheng
,
L.
,
Wang
,
A.
, and
Tsung
,
F.
,
2018
, “
A Prediction and Compensation Scheme for in-plane Shape Deviation of Additive Manufacturing with Information on Process Parameters
,”
IISE Trans.
,
50
(
5
), pp.
394
406
. 10.1080/24725854.2017.1402224
15.
Li
,
J.
,
Jin
,
R.
, and
Yu
,
H. Z.
,
2018
, “
Integration of Physically-based and Data-driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
. 10.1016/j.matdes.2017.11.028
16.
Schmutzler
,
C.
,
Bayerlein
,
F.
,
Janson
,
S.
,
Seidel
,
C.
, and
Zaeh
,
M. F.
,
2016
, “
Pre-compensation of Warpage for Additive Manufacturing
,”
J. Mech. Eng. Autom.
,
6
(
8
), pp.
392
399
. 10.17265/2159-5275/2016.08.002
17.
Wang
,
T. M.
,
Xi
,
J. T.
, and
Jin
,
Y.
,
2007
, “
A Model Research for Prototype Warp Deformation in the FDM Process
,”
Int. J. Adv. Manuf. Technol.
,
33
(
11–12
), pp.
1087
1096
. 10.1007/s00170-006-0556-9
18.
Armillotta
,
A.
,
Bellotti
,
M.
, and
Cavallaro
,
M.
,
2018
, “
Warpage of FDM Parts: Experimental Tests and Analytic Model
,”
Rob. Comput. Integr. Manuf.
,
50
(
Aug.
), pp.
140
152
. 10.1016/j.rcim.2017.09.007
19.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2015
, “
Out-of-Plane Geometric Error Prediction for Additive Manufacturing
,”
2015 IEEE International Conference on Automation Science and Engineering (CASE)
,
Gothenburg, Sweden
,
Aug. 24–28
,
IEEE
,
New York
, pp.
918
923
.
20.
Jin
,
Y.
,
Qin
,
S. J.
, and
Huang
,
Q.
,
2016
, “
Prescriptive Analytics for Understanding of Out-of-Plane Deformation in Additive Manufacturing
,”
2016 IEEE International Conference on Automation Science and Engineering (CASE)
,
Fort Worth, TX
,
Aug. 21–24
,
IEEE
,
New York
, pp.
786
791
.
21.
Srinivasan
,
R.
, and
Wood
,
K.
,
1997
, “
A Form Tolerancing Theory Using Fractals and Wavelets
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
185
193
. 10.1115/1.2826234
22.
Lee
,
S. H.
,
Zahouani
,
H.
,
Caterini
,
R.
, and
Mathia
,
T. G.
,
1998
, “
Morphological Characterisation of Engineered Surfaces by Wavelet Transform
,”
Int. J. Mach. Tools Manuf.
,
38
(
5–6
), pp.
581
589
. 10.1016/S0890-6955(97)00105-3
23.
Josso
,
B.
,
Burton
,
D. R.
, and
Lalor
,
M. J.
,
2002
, “
Frequency Normalised Wavelet Transform for Surface Roughness Analysis and Characterisation
,”
Wear
,
252
(
5–6
), pp.
491
500
. 10.1016/S0043-1648(02)00006-6
24.
Raja
,
J.
, and
Radhakrishnan
,
V.
,
1977
, “
Analysis and Synthesis of Surface Profiles Using Fourier Series
,”
Int. J. Mach. Tool Des. Res.
,
17
(
4
), pp.
245
251
. 10.1016/0020-7357(77)90018-X
25.
Tonks
,
M.
,
Chase
,
K.
, and
Smith
,
C.
,
2007
, “Predicting Deformation of Compliant Assemblies Using Covariant Statistical Tolerance Analysis,”
Models for Computer Aided Tolerancing in Design And Manufacturing
,
Davidson
,
J. K.
, ed.,
Springer
,
Dordrecht
, pp.
321
330
.
26.
Henke
,
R.
,
Summerhays
,
K.
,
Baldwin
,
J.
,
Cassou
,
R.
, and
Brown
,
C.
,
1999
, “
Methods for Evaluation of Systematic Geometric Deviations in Machined Parts and Their Relationships to Process Variables
,”
Precis. Eng.
,
23
(
4
), pp.
273
292
. 10.1016/S0141-6359(99)00023-9
27.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Mode-based Decomposition of Part Form Error by Discrete-cosine-transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
21
26
. 10.1016/S0007-8506(07)61457-7
28.
Lecompte
,
J.
,
Legoff
,
O.
, and
Hascoet
,
J. Y.
,
2010
, “
Technological Form Defects Identification Using Discrete Cosine Transform Method
,”
Int. J. Adv. Manuf. Technol.
,
51
(
9–12
), pp.
1033
1044
. 10.1007/s00170-010-2687-2
29.
Huang
,
W.
,
Liu
,
J.
,
Chalivendra
,
V.
,
Ceglarek
,
D.
,
Kong
,
Z.
, and
Zhou
,
Y.
,
2014
, “
Statistical Modal Analysis for Variation Characterization and Application in Manufacturing Quality Control
,”
IIE Trans.
,
46
(
5
), pp.
497
511
. 10.1080/0740817X.2013.814928
30.
Liu
,
J.
,
Zhang
,
Z.
,
Ding
,
X.
, and
Shao
,
N.
,
2018
, “
Integrating Form Errors and Local Surface Deformations Into Tolerance Analysis Based on Skin Model Shapes and a Boundary Element Method
,”
Comput.-Aided Des.
,
104
, pp.
45
59
. 10.1016/j.cad.2018.05.005
31.
Dantan
,
J. Y.
,
Huang
,
Z.
,
Goka
,
E.
,
Homri
,
L.
,
Etienne
,
A.
,
Bonnet
,
N.
, and
Rivette
,
M.
,
2017
, “
Geometrical Variations Management for Additive Manufactured Product
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
161
164
. 10.1016/j.cirp.2017.04.034
32.
Zhang
,
Y.
, and
Chou
,
Y.
,
2006
, “
Three-dimensional Finite Element Analysis Simulations of the Fused Deposition Modelling Process
,”
Proc. Inst. Mech. Eng. B
,
220
(
10
), pp.
1663
1671
. 10.1243/09544054JEM572
33.
Zhang
,
Y.
, and
Chou
,
K.
,
2008
, “
A Parametric Study of Part Distortions in Fused Deposition Modelling Using Three-dimensional Finite Element Analysis
,”
Proc. Inst. Mech. Eng. B
,
222
(
8
), pp.
959
967
. 10.1243/09544054JEM990
34.
Bugeda
,
G.
,
Cervera
,
M.
,
Lombera
,
G.
, and
Oñate
,
E.
,
1995
, “
Numerical Analysis of Stereolithography Processes Using the Finite Element Method
,”
Rapid Prototyping J.
,
1
(
2
), pp.
13
23
. 10.1108/13552549510086835
35.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
. 10.1115/1.4028669
36.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
. 10.1016/j.commatsci.2016.10.003
37.
Li
,
C.
,
Fu
,
C.
,
Guo
,
Y.
, and
Fang
,
F.
,
2016
, “
A Multiscale Modeling Approach for Fast Prediction of Part Distortion in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
229
, pp.
703
712
. 10.1016/j.jmatprotec.2015.10.022
38.
Li
,
C.
,
Liu
,
J.
,
Fang
,
X.
, and
Guo
,
Y.
,
2017
, “
Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
157
168
. 10.1016/j.addma.2017.08.014
39.
Keller
,
N.
,
Neugebauer
,
F.
,
Xu
,
H.
, and
Ploshikhin
,
V.
,
2013
, “
Thermo-Mechanical Simulation of Additive Layer Manufacturing of Titanium Aerospace Structures
,”
The International Conference on Light Materials (LightMAT)
,
Bremen, Germany
,
Sept. 3–5
.
40.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z.-K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L.-Q.
,
2014
, “
Toward An Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1
, pp.
52
63
. 10.1016/j.addma.2014.09.002
41.
Bugatti
,
M.
, and
Semeraro
,
Q.
,
2018
, “
Limitations of the Inherent Strain Method in Simulating Powder Bed Fusion Processes
,”
Addit. Manuf.
,
23
, pp.
329
346
. 10.1016/j.addma.2018.05.041
42.
Li
,
C.
,
Liu
,
J. F.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2017
, “
Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
157
168
. 10.1016/j.addma.2017.08.014
43.
Buchbinder
,
D.
,
Meiners
,
W.
,
Pirch
,
N.
,
Wissenbach
,
K.
, and
Schrage
,
J.
,
2014
, “
Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting
,”
J. Laser Appl.
,
26
(
1
), p.
012004
. 10.2351/1.4828755
44.
Roy
,
A. B.
,
Dey
,
D.
,
Mohanty
,
B.
, and
Banerjee
,
D.
,
2012
, “
Comparison of FFT, DCT, DWT, WHT Compression Techniques on Electrocardiogram and Photoplethysmography Signals
,”
International Conference on Computing, Communication and Sensor Network (CCSN)
,
Rourkela, India
,
Nov. 22–23
, pp.
6
11
.
45.
Mallet
,
J.-L.
,
1989
, “
Discrete Smooth Interpolation
,”
ACM Trans. Graph. (TOG)
,
8
(
2
), pp.
121
144
. 10.1145/62054.62057
46.
Mallet
,
J.-L.
,
1992
, “
Discrete Smooth Interpolation in Geometric Modelling
,”
Comput.-Aided Des.
,
24
(
4
), pp.
178
191
. 10.1016/0010-4485(92)90054-E
47.
Mallet
,
J.-L.
,
1997
, “
Discrete Modeling for Natural Objects
,”
Math. Geol.
,
29
(
2
), pp.
199
219
. 10.1007/BF02769628
48.
Shao
,
C.
,
Ren
,
J.
,
Wang
,
H.
,
Jin
,
J. J.
, and
Hu
,
S. J.
,
2017
, “
Improving Machined Surface Shape Prediction by Integrating Multi-task Learning with Cutting Force Variation Modeling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011014
. 10.1115/1.4034592
49.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
58
(
1
), pp.
267
288
.
50.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput.-Aid. Des.
,
50
, pp.
1
15
. 10.1016/j.cad.2014.01.001
51.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
141
144
. 10.1016/j.cirp.2017.04.040
You do not currently have access to this content.