Abstract

Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.

References

1.
Hu
,
P.
,
Zhou
,
H.
,
Tang
,
K.
,
Lee
,
C.
,
Chen
,
J.
,
Yang
,
J.
, and
Li
,
L.
,
2018
, “
Spiral Curve-Based Efficient Five-Axis Sweep Scanning of Barrel-Shaped Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071001
. 10.1115/1.4039383
2.
Lu
,
Y. A.
,
Ding
,
Y.
,
Wang
,
C.
, and
Zhu
,
L.
,
2018
, “
Tool Path Generation for Five-Axis Machining of Blisks With Barrel Cutters
,”
Int. J. Prod. Res.
,
7543
(
May
), pp.
1
15
. 10.1080/00207543.2018.1470344
3.
Fan
,
H. Z.
,
Xi
,
G.
,
Wang
,
W.
, and
Cao
,
Y.
,
2016
, “
An Efficient Five-Axis Machining Method of Centrifugal Impeller Based on Regional Milling
,”
Int. J. Adv. Manuf. Technol.
,
87
(
1
4
), pp.
789
799
. 10.1007/s00170-016-8467-x
4.
Lin
,
M. T.
, and
Wu
,
S. K.
,
2013
, “
Modeling and Analysis of Servo Dynamics Errors on Measuring Paths of Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
66
(
Mar.
), pp.
1
14
. 10.1016/j.ijmachtools.2012.11.002
5.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2017
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. E.
,
140
(
1
), p.
011015
. 10.1115/1.4038000
6.
Kurita
,
T.
, and
Hattori
,
M.
,
2005
, “
Development of New-Concept Desk Top Size Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
45
(
7
8
), pp.
959
965
. 10.1016/j.ijmachtools.2004.10.009
7.
Kvrgic
,
V.
,
Dimic
,
Z.
,
Cvijanovic
,
V.
,
Vidakovic
,
J.
, and
Kablar
,
N.
,
2014
, “
A Control Algorithm for Improving the Accuracy of Five-Axis Machine Tools
,”
Int. J. Prod. Res.
,
52
(
10
), pp.
2983
2998
. 10.1080/00207543.2013.858194
8.
Tang
,
Q.
,
Yin
,
S.
,
Chen
,
F.
,
Huang
,
S.
,
Luo
,
H.
, and
Geng
,
J.
,
2018
, “
Development of a Postprocessor for Head Tilting-Head Rotation Type Five-Axis Machine Tool With Double Limit Rotation Axis
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9–12
), pp.
3523
3534
. 10.1007/s00170-018-2195-3
9.
Yang
,
J.
, and
Altintas
,
Y.
,
2013
, “
Generalized Kinematics of Five-Axis Serial Machines with Non-Singular Tool Path Generation
,”
Int. J. Mach. Tools Manuf.
,
75
(
Dec.
), pp.
119
132
. 10.1016/j.ijmachtools.2013.09.002
10.
Castagnetti
,
C.
,
Duc
,
E.
, and
Ray
,
P.
,
2008
, “
The Domain of Admissible Orientation Concept: A New Method for Five-Axis Tool Path Optimization
,”
Comput.-Aided Des.
,
40
(
9
), pp.
938
950
. 10.1016/j.cad.2008.07.002
11.
Lin
,
Z.
,
Fu
,
J.
,
Shen
,
H.
, and
Gan
,
W.
,
2014
, “
Non-Singular Tool Path Planning by Translating Tool Orientations in C-Space
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1835
1848
. 10.1007/s00170-014-5629-6
12.
Bi
,
Z. M.
, and
Kang
,
B.
,
2010
, “
Enhancement of Adaptability of Parallel Kinematic Machines With an Adjustable Platform
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061016
. 10.1115/1.4003120
13.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2015
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031011
. 10.1115/1.4030938
14.
Xie
,
F.
,
Liu
,
X.-J.
,
Luo
,
X.
, and
Wabner
,
M.
,
2016
, “
Mobility, Singularity, and Kinematics Analyses of a Novel Spatial Parallel Mechanism
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061022
. 10.1115/1.4034886
15.
Newkirk
,
J. T.
,
Watson
,
L. T.
, and
Stanišić
,
M. M.
,
2010
, “
Determining the Number of Inverse Kinematic Solutions of a Constrained Parallel Mechanism Using a Homotopy Algorithm
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
024502
. 10.1115/1.4001127
16.
Cui
,
L.
, and
Dai
,
J. S.
,
2012
, “
Reciprocity-Based Singular Value Decomposition for Inverse Kinematic Analysis of the Metamorphic Multifingered Hand
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034502
. 10.1115/1.4006187
17.
Remus Tutunea-Fatan
,
O.
, and
Feng
,
H.-Y.
,
2004
, “
Configuration Analysis of Five-Axis Machine Tools Using a Generic Kinematic Model
,”
Int. J. Mach. Tools Manuf.
,
44
(
Sept.
), pp.
1235
1243
. 10.1016/j.ijmachtools.2004.03.009
18.
Ding
,
S.
,
Huang
,
X.
,
Yu
,
C.
, and
Wang
,
W.
,
2016
, “
Actual Inverse Kinematics for Position-Independent and Position-Dependent Geometric Error Compensation of Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
111
(
Aug.
), pp.
55
62
. 10.1016/j.ijmachtools.2016.10.001
19.
Xu
,
H.-Y.
,
Hu
,
L.
,
Hon-Yuen
,
T.
,
Shi
,
K.
, and
Xu
,
L.
,
2013
, “
A Novel Kinematic Model for Five-Axis Machine Tools and Its CNC Applications
,”
Int. J. Adv. Manuf. Technol.
,
67
(
July
), pp.
1297
1307
. 10.1007/s00170-012-4566-5
20.
Qin
,
H.
,
Chen
,
Y.
,
Yang
,
J.
, and
Zhang
,
D.
,
2018
, “
An Analytical C3 Continuous Local Corner Smoothing Algorithm for Four-Axis Computer Numerical Control Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051004
. 10.1115/1.4039116
21.
Lai
,
Y. L.
,
Liao
,
C. C.
, and
Chao
,
Z. G.
,
2018
, “
Inverse Kinematics for a Novel Hybrid Parallel–Serial Five-Axis Machine Tool
,”
Rob. Comput. Integr. Manuf.
,
50
(
Apr.
), pp.
63
79
. 10.1016/j.rcim.2017.09.002
22.
Huang
,
N.
,
Bi
,
Q.
, and
Wang
,
Y.
,
2015
, “
Identification of Two Different Geometric Error Definitions for the Rotary Axis of the 5-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
91
(
Apr.
), pp.
109
114
. 10.1016/j.ijmachtools.2015.02.003
23.
Huang
,
N.
,
Jin
,
Y.
,
Bi
,
Q.
, and
Wang
,
Y.
,
2015
, “
Integrated Post-Processor for 5-Axis Machine Tools With Geometric Errors Compensation
,”
Int. J. Mach. Tools Manuf.
,
94
(
July
), pp.
65
73
. 10.1016/j.ijmachtools.2015.04.005
24.
Jung
,
H. C.
,
Hwang
,
J. D.
,
Park
,
K. B.
, and
Jung
,
Y. G.
,
2011
, “
Development of Practical Postprocessor for 5-Axis Machine Tool With Non-Orthogonal Rotary Axes
,”
J. Cent. South Univ. Technol.
,
18
(
1
), pp.
159
164
. 10.1007/s11771-011-0674-x
25.
Hwang
,
J. D.
,
Jung
,
H. C.
,
Park
,
K. B.
, and
Jung
,
Y. G.
,
2010
, “
A Study on the Development of a Practical Postprocessor for 5-Axis Machining
,”
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
,
Istanbul, Turkey
,
July 12–14
, pp.
793
798
.
26.
Cheypoca
,
T.
,
Lekthamrong
,
C.
,
Koomgaew
,
C.
,
Wuti
,
V.
, and
Riewruja
,
V.
,
2010
, “
High Efficiency Postprocessor for Generic NC Machine
,”
Control Automation and Systems (ICCAS) 2010 International Conference on IEEE
,
Gyeonggi-do, Korea
,
October
, pp.
511
514
.
27.
Lee
,
R. S.
, and
Lin
,
Y. H.
,
2010
, “
Development of Universal Environment for Constructing 5-Axis Virtual Machine Tool Based on Modified D–H Notation and OpenGL
,”
Rob. Comput. Integr. Manuf.
,
26
(
3
), pp.
253
262
. 10.1016/j.rcim.2009.11.001
28.
Mudcharoen
,
A.
, and
Makhanov
,
S. S.
,
2011
, “
Optimization of Rotations for Six-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
435
451
. 10.1007/s00170-010-2864-3
29.
Katz
,
R.
, and
Li
,
Z.
,
2004
, “
Kinematic and Dynamic Synthesis of a Parallel Kinematic High Speed Drilling Machine
,”
Int. J. Mach. Tools Manuf.
,
44
(
12–13
), pp.
1381
1389
. 10.1016/j.ijmachtools.2004.04.007
30.
Yun
,
J.
,
Jung
,
Y.
, and
Kurfess
,
T.
,
2013
, “
A Geometric Postprocessing Method for 5-Axis Machine Tools Using Locations of Joint Points
,”
Int. J. Precis. Eng. Manuf.
,
14
(
11
), pp.
1969
1977
. 10.1007/s12541-013-0268-7
31.
Chu
,
A. M.
, and
Bohez
,
E. L. J.
,
2016
, “
New Algorithm to Minimise Kinematic Tool Path Errors Around 5-Axis Machining Singular Points
,”
Int. J. Prod. Res.
,
54
(
20
), pp.
5965
5975
. 10.1080/00207543.2015.1134838
32.
Sørby
,
K.
,
2007
, “
Inverse Kinematics of Five-Axis Machines Near Singular Configurations
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
299
306
. 10.1016/j.ijmachtools.2006.03.011
33.
Cripps
,
R. J.
,
Cross
,
B.
,
Hunt
,
M.
, and
Mullineux
,
G.
,
2016
, “
Singularities in Five-Axis Machining: Cause, Effect and Avoidance
,”
Int. J. Mach. Tools Manuf.
,
116
(
May
), pp.
40
51
. 10.1016/j.ijmachtools.2016.12.002
34.
Lin
,
Z.
,
Fu
,
J.
,
Yao
,
X.
, and
Sun
,
Y.
,
2015
, “
Improving Machined Surface Textures in Avoiding Five-Axis Singularities Considering Tool Orientation Angle Changes
,”
Int. J. Mach. Tools Manuf.
,
98
(
Nov.
), pp.
41
49
. 10.1016/j.ijmachtools.2015.09.001
35.
Lin
,
Z.
,
Fu
,
J.
,
Shen
,
H.
,
Xu
,
G.
, and
Sun
,
Y.
,
2016
, “
Singularities in Five-Axis Machining: Cause, Effect and Avoidance
,”
Int. J. Mach. Tools Manuf.
,
108
(
May
), pp.
1
12
. 10.1016/j.ijmachtools.2016.05.006
36.
Lavernhe
,
S.
,
Tournier
,
C.
, and
Lartigue
,
C.
,
2008
, “
Kinematical Performance Prediction in Multi-Axis Machining for Process Planning Optimization
,”
Int. J. Adv. Manuf. Technol.
,
37
(
5
6
), pp.
534
544
. 10.1007/s00170-007-1001-4
You do not currently have access to this content.